0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Exploring the Relationship Between Gameplay Log Data and Depression & Anxiety
نویسندگان :
Soroush Elyasi
1
Arya Varasteh Nezhad
2
Fattaneh Taghiyareh
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
Data Analytics،Behavioral Analysis،Human-Computer Interaction،Mental Health Assessment،Serious Game،Depression and Anxiety
چکیده :
Depression and Anxiety are prevalent mental health disorders affecting millions worldwide. Identifying these disorders accurately and promptly is crucial to ensure that individuals can receive appropriate treatment. To address this issue, this paper proposes using a game to identify behavioral patterns that indicate depression and anxiety. Our study involved 56 university students. In this paper, we used statistical tools such as calculating Correlation, Linear Regression, Kolmogorov–Smirnov, ANOVA, and Mann–Whitney U test to analyze our data. For this research, we designed a shooter and a memory-based game that can challenge disorders by creating exciting and stressful moments. Using serious games offers several advantages over traditional methods, like increasing accuracy and reducing bias by removing self-reports and sampling with monitoring player behaviors for extended periods. Our results indicate that several parameters are significantly related to depression and anxiety. These parameters include the number of guesses and surrendering in memory games, manner of movements, losing perks, losing lives, number of enemies colliding with the player, and number of playing to win in shooter games. We also found that log size and skipping game tutorials in each game were related to depression and anxiety. Lastly, age and getting help from others were identified as significant factors. Overall, our research highlights the potential of games as an alternative tool for assessing and understanding depression and anxiety disorders. By leveraging the interactive nature of games, researchers and clinicians can gain valuable insights into individuals' mental health conditions, leading to improved identification and treatment outcomes.
لیست مقالات
لیست مقالات بایگانی شده
LLM-Driven Feature Extraction for Stock Market Prediction: A case study of Tehran Stock Exchange
Siavash Hosseinpour Saffarian - Saman Haratizadeh
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Automatic Analysis of Inconsistencies in Inter-Enterprise Business Processes: Introducing a Formal Adaptation Patterns Catalog
Somayeh Ashourian - Shohreh َAjoudanian
سنجش داده محور ارزش ویژه برند کارکنان
علیرضا برادران - سپیده نصیری
جمعآوری، تحلیل و خلاصه سازی نظرات کاربران فارسی زبان در شبکههای اجتماعی پیرامون بیماری فراگیر کووید-19
محمدرضا شمس - محمد یاسین فخار محمدرضا شمس - محمد یاسین فخار -
Writer-Independent Signature Verification with Enhanced AlexNet and Preprocessing Analysis
Mohammadreza Gholipour Shahraki - Mohammad Ghasemzadeh
Benchmarking Embedding Models for Persian-Language Semantic Information Retrieval
Mahmood Kalantari - Mehdi Feghhi - Nasser Mozayani
بهبود رهگیری در زنجیره تامین با استفاده از فناوری زنجیره بلوکی
سید عماد موسوی - مهرداد آشتیانی
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2