0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
نویسندگان :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
چکیده :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
لیست مقالات
لیست مقالات بایگانی شده
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
آرتمیا: پروتکل مسیریابی مبتنی بر انجمن و آگاه به نظم تماس در شبکة اجتماعی متحرک تأخیرپذیر
سعید مرادی - جمشید باقرزاده محاسفی
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
Enhancing kNN-Based Intrusion Detection with Differential Evolution with Auto-Enhanced Population Diversity
Zohre Karimi - Zeinab Torabi
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
IoMT-Enabled Smart Healthcare: State-of-the-Art, Security and Future Directions
Shivam Tripathi - Vatsalkumar Makwana - Malaram Kumhar - Harshal Trivedi - Jitendra Bhatia - Sudeep Tanwar - Hossein Shahinzadeh
Sigma: A Secure Federated Network Gaming Platform
Keyhan Mohammadi - Reza Ebrahimi Atani
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4