0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
نویسندگان :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
چکیده :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
لیست مقالات
لیست مقالات بایگانی شده
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
امنیت در اینترنت اشیا؛ معماری، کاربردها، چالشها و راهکارها
مهدی موسی وند - دکتر پیام محمودی نصر مهدی موسی وند - پیام محمودی نصر -
Optimal selection of seed nodes by reducing the influence of common nodes in the influence maximization problem
Farzaneh Kazemzadeh - Ali Asghar Safaei - Mitra Mirzarezaee
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
Presentation of a New Decoder Based on Quantum Cellular Automata Technology Along with an Analysis of Energy Consumption
- - -
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Maedeh Mosharraf - Faezeh Banabazi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1