0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
نویسندگان :
Amirhossein Molazadeh
1
Zahra Maroufi
2
Mehrdad Ardebilipour
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
mmwave communication،hybrid beamforming،machine learning،channel estimation،deap neural network
چکیده :
A time-varying channel model makes estimating the channel coefficients challenging for the millimeter wave (mmWave) multi user multi-input multi-output (MIMO) communication, attributable to the many coefficients that have to be estimated with a limited number of measurements as well as the severe propagation loss experienced by the mmWave band. Thus, it is proposed to divide the channel estimation in time-varying mmWave systems in two stages, using a frame structure and assuming that angles of arrival/departure (AoAs/AoDs) vary much more slowly than path gains. MmWave channels have a sparse nature that is leveraged in the first stage to formulate the estimate of AoAs/AoDs as a block-sparse signal recovery problem. By the obtained estimate of the AoAs/AoDs, in the second stage the beamforming that maximize the desired pilot power is utilized in order to measure the path gains accurately. In this article, we propose the Deep Neural Network based Angle Estimation (DNNAE) algorithm by defining a deep neural network structure with appropriate input and output. Accordingly, we provide a method based on machine learning to increase the accuracy of channel AoDs/AoAs estimation. Therefore, without the need to update the angle grid area and with low complexity, we obtain a suitable estimation accuracy. Simulation results demonstrate that with the proposed DNNAE scheme, we outperform the previously proposed Adaptive Angle Estimation (AAE) algorithm despite the much lower computational complexity.
لیست مقالات
لیست مقالات بایگانی شده
A hybrid CNN–transformer framework for retinal disease classification
Hanie Zomorrodi - Hassan Khotanlou
ارائه یک مدل تصمیم گیری چند معیاره فازی به منظور بهبود دقت فرایند تصمیم گیری به هنگام اختلال هوانوردی
فاطمه عطا عبدالرزاق - نگار مجمع
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
SPA Bot: Smart Price-Action Trading Bot for Cryptocurency Market
Dr Hamid Jazayeriy - Mohammad Daryani
Enhancing Persian Speech Emotion Recognition with Contrastive Learning and Multimodal Fusion
Mobina Esmaeili - Vajiheh Sabeti
ساخت پیکره برچسب خورده گزارش های آسیب شناسی
مسلم سمیعی پاقلعه - مهرنوش شمس فرد
Improving Transition Cow Index Accuracy through CatBoost-Based Prediction of First Test-Day Milk Yield
Hoda Safaeipour - Sepehr Ebadi
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
طراحی پلتفرم یکپارچه مدیریت مزرعه هوشمند مبتنی بر اینترنت اشیاء و یادگیری عمیق
محمد خدادادی نژاد - صبا جودکی
Intelligent Transportation System (ITS) Using Internet of Things (IoT)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Sayyed Mohammad Reza Talakesh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2