0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
نویسندگان :
Mohammad Bahrami
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
Sajjad Ansaria
4
1- دانشگاه شاهد
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
4- دانشگاه شاهد
کلمات کلیدی :
Drone،Deep learning،Detection،Datasets
چکیده :
Abstract In recent years, remotely piloted birds(drones) have become significantly more accessible to the general public. Affordable prices economical, being equipped with advanced technologies, small sizes, easy portability and setup, create many concerns. For example, drones can be used for destructive activities, spying on private properties, monitoring vital places, carrying dangerous objects which is a big threat to the society. For this reason, the identification of drones is considered important has been in order to solve the above challenges that the university and the industry have provided several solutions in recent years. In this paper, an improved method is introduced to detect drones based on deep learning. This system is designed based on camera recognition. Based on the camera images, the system determines the location of the drone on the image by dragging the box around it. For our methods OpenCV library and YOLO algorithm are used. The simulation results show that the drone can be detected in 17 milliseconds and the detection is done with 85% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
طه رستمی - دکتر سعید جلیلی طه رستمی - سعید جلیلی -
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
تولید خودکار موارد آزمون برای پوشش مسیر اصلی با الگوریتم جایا
ُSaba Yadegari - Mohammad-Reza Keyvanpour
سیستم توصیه گر برای خرید لوازم آرایشی و بهداشتی مبتنی بر الگوریتم جنگل تصادفی
فاطمه رمضانی خوزستانی - مجید رفیعی
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
روش مهاجرت خوشهای برای بهبود بستربندی به مشتری در گردشکارهای بدون سرویسدهنده
محمدامین قسوری جهرمی - مهرداد آشتیانی - فاطمه بخشی
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1