0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
نویسندگان :
Mohammad Bahrami
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
Sajjad Ansaria
4
1- دانشگاه شاهد
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
4- دانشگاه شاهد
کلمات کلیدی :
Drone،Deep learning،Detection،Datasets
چکیده :
Abstract In recent years, remotely piloted birds(drones) have become significantly more accessible to the general public. Affordable prices economical, being equipped with advanced technologies, small sizes, easy portability and setup, create many concerns. For example, drones can be used for destructive activities, spying on private properties, monitoring vital places, carrying dangerous objects which is a big threat to the society. For this reason, the identification of drones is considered important has been in order to solve the above challenges that the university and the industry have provided several solutions in recent years. In this paper, an improved method is introduced to detect drones based on deep learning. This system is designed based on camera recognition. Based on the camera images, the system determines the location of the drone on the image by dragging the box around it. For our methods OpenCV library and YOLO algorithm are used. The simulation results show that the drone can be detected in 17 milliseconds and the detection is done with 85% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
Face Recognition Based on Local Statistical Features and Artificial Neural Network
Mehdi Moghimi - Dr Hadi Grailu
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
طبقه بندی آسیبهای لیگامنت با استفاده از تحلیل تصاویر تشدید مغناطیسی توسط الگوریتمهای یادگیری عمیق
محسن اکبری - دکتر مریم مؤمنی محسن اکبری - مریم مؤمنی -
IT-based and Non-IT-based methods to separate and collect waste
Hoda Harati - Farzad Haghighi-Rad - Reza Yousefi Zenouz
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
پیشبینی میزان بقای بیماران مبتلا به سرطان ریه با استفاده از ترکیب کارآمد روشهای دادهکاوی و بهینهسازی رقابت استعماری
رخشان رمضانی سرچشمه - مهدی هاشمزاده - امین گلزاری اسکوئی
یک روش کارآمد جهت تشخیص آنلاین حملات DRDoS به سرویس های مبتنی بر UDP درمعماری SDN با استفاده از الگوریتم های یادگیری ماشین
میترا اکبری کهنه شهری - دکتر رضا محمدی - دکتر محمد نصیری میترا اکبری کهنه شهری - رضا محمدی - محمد نصیری -
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1