0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
نویسندگان :
Mohammad Bahrami
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
Sajjad Ansaria
4
1- دانشگاه شاهد
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
4- دانشگاه شاهد
کلمات کلیدی :
Drone،Deep learning،Detection،Datasets
چکیده :
Abstract In recent years, remotely piloted birds(drones) have become significantly more accessible to the general public. Affordable prices economical, being equipped with advanced technologies, small sizes, easy portability and setup, create many concerns. For example, drones can be used for destructive activities, spying on private properties, monitoring vital places, carrying dangerous objects which is a big threat to the society. For this reason, the identification of drones is considered important has been in order to solve the above challenges that the university and the industry have provided several solutions in recent years. In this paper, an improved method is introduced to detect drones based on deep learning. This system is designed based on camera recognition. Based on the camera images, the system determines the location of the drone on the image by dragging the box around it. For our methods OpenCV library and YOLO algorithm are used. The simulation results show that the drone can be detected in 17 milliseconds and the detection is done with 85% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Morteza Tavana
طراحی پلتفرم یکپارچه مدیریت مزرعه هوشمند مبتنی بر اینترنت اشیاء و یادگیری عمیق
محمد خدادادی نژاد - صبا جودکی
Emotion Recognition Using Effective Connectivity and Fully Complex-Valued Magnetic Graph Convolution Neural Network
Armin Pishehvar - Eghbal Mansoori - Abbas Mehrbaniyan - Reza Tahmasebi
خوشه بندی ویسیلاب های دو آوایی زبان فارسی در کاربرد لب خوانی
مهسا هدایتی پور - دکتر یاسر شکفته - دکتر محسن ابراهیمی مقدم
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
A New Routing Protocol in Internet of Vehicles Inspired of Spread Model of the Covid-19 Virus
Taha Yasin Rezapour - Esmaeil Zeinali - Reza Ebrahimi Atani - Mohammad Mehdi Gilanian Sadeghi
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
مروری بر تشخیص جامعه در شبکه های اجتماعی
صفورا اخلاقی - محمدباقر منهاج - بهروز معصومی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2