0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
نویسندگان :
Anita Karim Ghassabpour
1
Hatam Abdoli
2
Muharram Mansoorizadeh
3
Saeid Seyedi
4
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
3- دانشگاه بوعلی سینا
4- دانشگاه بوعلی سینا
کلمات کلیدی :
Air Pollution،Particulate Matter،PM2.5،Machine Learning،Hamedan
چکیده :
Given that fine particles are one of the main origins of respiratory disorders, it is considered that PM2.5 is among the important contributors to air pollution and is a serious global health concern nowadays. This paper considers a new analytical approach for the prediction of PM2.5 concentration in Hamadan, Iran, with hopes of finding some ways to reduce the negative impacts of air pollution. During the last two years, the PM2.5 hourly data was gathered; they were preprocessed, and the outlier values were imputed using K-Nearest Neighbors techniques. To increase the accuracy, the estimation was improved by applying four machine learning models, namely, random forest, decision tree, support vector machine, and linear regression. Originality is represented by merging machine learning models with the time series model ARIMA. Thus, each model hybrid takes the strengths from all, giving a higher value of prediction of PM2.5 concentration. In this study many metrics such as MSE, RMSE, MAE, precision, and recall are applied for finding out the best model performance. Probably the most relevant outcome of our results is that the combination of linear regression and ARIMA returned a significant performance boost: MSE improved by 58%, while RMSE improved by 35%. This dramatic improvement underlines the predictive potential of hybrid models for air quality forecasting and forms a milestone in the study of PM2.5 prediction for the region.
لیست مقالات
لیست مقالات بایگانی شده
Dealing with Black-hole Attacks in Inter-vehicle Networks Using the Packet Delivery Rate Algorithm
Marzieh Sedighi - Mehdi Hamidkhani - Mostafa Sadeghi
ارائه تکنیک یادگیری چندهسته ای مبتنی بر روش بهینه سازی برای مسئله دسته بندی سیگنال های EEG مبتنی بر تصور حرکتی
یوکابد امیری - حسام عمرانپور
An approach to model the optimal service provisioning in vehicular cloud networks
Farhoud Jafari Kaleibar - Maghsoud Abbaspour
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
جایگزینی دارو براساس پیشبینی یال روی گرافهای ناهمگون با بهرهگیری از جاسازی گراف ناهمگون
رسول سامانی - فهیمه شاهرخ شهرکی - دکتر ناصر قدیری رسول سامانی - فهیمه شاهرخ شهرکی - ناصر قدیری -
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
A New Routing Protocol in Internet of Vehicles Inspired of Spread Model of the Covid-19 Virus
Taha Yasin Rezapour - Esmaeil Zeinali - Reza Ebrahimi Atani - Mohammad Mehdi Gilanian Sadeghi
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
Presenting an Edge-based Air Quality Management System for Smart City Scenarios
Tina Samizadeh Nikoui - Ali Balador - Amir Masoud Rahmani - Hooman Tabarsaied
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1