0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Violence detection using one-dimensional convolutional networks
نویسندگان :
Narges Honarjoo
1
Ali Abdari
2
Azadeh Mansouri
3
1- دانشگاه خوارزمی
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
کلمات کلیدی :
violence detection، one-dimensional convolution، real-time application، temporal pooling
چکیده :
Violence detection in surveillance video processing is a useful capability helping discover abnormal events in different places. Utilizing methods considering the accuracy and complexity simultaneously can provide systems suitable for real-time applications. In this paper, by exploiting one-dimensional convolutional networks a new approach is proposed which extracts the temporal features across consecutive frames properly. This approach not only represents a series of frames with a robust feature vector, but it also is low-complexity and can be applied for real-time applications. The experimental results on Hockey, ViolentFlow reveal the efficiency of the proposed method
لیست مقالات
لیست مقالات بایگانی شده
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
Web Service Ranking based on QoS and Use Prefer
Seyed Hossein Siadat - Danial Ramezani - Fatemeh Ahani
Energy–Aware Clustering Routing Protocol to Improve the Multi-hop WSN Lifetime
Alireza Gholamrezaee - Hoda Gholamrezaee - Mahtab Hadiyan
Sentiment Analysis of the Amazon Customers Using the BiGRU Neural Network Enhanced by Attention Mechanism
Sara Sinan Salman al-Abedi - Keyvan Mohebbi
کشف لبه در تصاویر پزشکی با استفاده از اتوماتای سلولی سلسله مراتبی
مریم علینقی زاده - علیرضا رضوانیان
Identifying Children's Personality Styles through Drawing Analysis using Machine Learning
Maedeh Mosharraf - Faezeh Banabazi
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
A Joint Trajectory and Energy Harvesting Method for an UAV Enabled Disaster Response Network
Hosein Mohammadi Firozjae - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1