0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
GNN-based Topology Feature Extraction for Adaptive 6G Network Slicing
نویسندگان :
Amirmasoud Sepehrian
1
Siavash Khorsandi
2
1- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
2- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
کلمات کلیدی :
6G Networks،Soft Network Slicing،Graph Neural Networks،Topology Feature Extraction،Representation Power،Comparative Evaluation
چکیده :
The evolution to 6G networks introduces unprecedented challenges, including ultra-high data rates, massive connectivity, and stringent QoS demands (e.g., sub-millisecond latency for URLLC) in highly dynamic, heterogeneous environments. Traditional hard slicing methods fall short in adapting to fluctuating traffic and resource availability, leading to inefficiencies in resource utilization, SLA violations, and increased energy consumption. This necessitates advanced adaptive mechanisms like soft network slicing, which require precise topology descriptions to predict performance metrics and enable real-time orchestration. Graph Neural Networks (GNNs) are essential here, as they excel at capturing intricate graph-structured relationships in network topologies—far superior to conventional ML models that ignore relational dependencies—facilitating scalable feature extraction for optimization tasks. This research addresses these needs through two core components: (1) a comprehensive comparison of GNN variants (GraphSAGE, GCN, GAT, TransformerConv) to evaluate their representation power in terms of descriptive accuracy and runtime; and (2) a novel embedding method that integrates current slicing requests and global graph features (e.g., density, centrality) with local attributes. Using the Internet Topology Zoo dataset augmented with 6G slice variants, we assess models on metrics like MSE, R2, SMAPE, runtime efficiency, and generalization.
لیست مقالات
لیست مقالات بایگانی شده
بررسی کارآمدی فناوری وب 0.2 در پشتیبانی از فرآیندهای انسان محور و دانش مبنا
سید احسان ملیحی - فاطمه مشایخی کردکلا
Violence detection using one-dimensional convolutional networks
Narges Honarjoo - Ali Abdari - Dr Azadeh Mansouri
مدل یادگیری ماشین برای تشخیص تقلب در کارتهای اعتباری با رویکرد بهینهسازی AUC و تنظیم خودکار ابرپارامترها
محمد مهدی متولی
Aspect-Based Sentiment Analysis of After-Sales Service Quality: A Case Study of Snowa and Competitors Using Digikala Reviews
Safiyeh Samadanian - Marjan Kaedi
Towards Provable Privacy Protection in IoT-Health Applications
Samane Sobuti - دکتر سیاوش خرسندی
Beyond One-Hot: CatBoost for Heating and Cooling Load Prediction
Shayan Naghizadeh - Mohammad Saeed Rajabi - Ehsan Nazerfard
ارائه راهکاری جهت مقابله با حملات DoS در شبکه های نرم افزارمحور
ویدا هاشمی - احمد بختیاری شهری - رضا جاویدان
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Morteza Tavana
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2