0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
نویسندگان :
Alireza Akhavan safaei
1
Pegah Saboori
2
Reza Ramezani
3
Morteza Tavana
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
4- شرکت آسمان رصد هادی
کلمات کلیدی :
Data Augmentation،Micro-Crack Detection،Convolutional Neural Network،Self-Supervised Learning،Transfer Learning
چکیده :
This study presents a method for the automatic identification of micro-cracks in photovoltaic solar modules using deep learning techniques. The main challenge in this research is the lack of labeled data and class imbalance for the detection of micro-cracks. The proposed method employs a multi-stage approach. Initially, 10% of the dataset is manually labeled to train a simple convolutional neural network model. This model is then used to generate pseudo-labels for the unlabeled data using a self-supervised approach. The pseudo-labels are manually reviewed to increase the number of micro-crack samples in the training set. Data augmentation techniques are also applied to increase the size and diversity of the training dataset. Finally, the pre-trained ResNet-50 model is fine-tuned on the expanded labeled dataset for accurate detection of micro-cracks. Advanced preprocessing steps, including solar cell segmentation, cropping, and data augmentation, have been performed. The class imbalance problem is addressed through undersampling and weighted loss functions. The experimental results demonstrate the effectiveness of the proposed method, achieving an accuracy of 0.9782 and an F1-score of 0.7776 in the detection of micro-cracks in electroluminescence images of solar panels. This study provides insights into the use of limited labeled data for training robust deep learning models for the identification of defects in solar modules.
لیست مقالات
لیست مقالات بایگانی شده
کشف برخط تقلب پیشنهاد ساختگی (Bid-Shielding) در مناقصه و مزایدههای الکترونیکی هلندی با رویکرد تحلیل شبکه اجتماعی
فاطمه الثلایا - دکتر سید علیرضا هاشمی گلپایگانی فاطمه الثلایا - سید علیرضا هاشمی گلپایگانی -
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
شکلدهی سه بعدی پرتو و بهبود نرخ امن در شبکههای مخابراتی بیسیم-تواندادهشده مبتنی بر صفحات بازتابی هوشمند
کوثر انصاری - دکتر مهدی مجیدی
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
UltraLearn: Next-Generation CyberSecurity Learning Platform
Saeed Raisi - Saeid Ghasemshirazi - Ghazaleh Shirvani
Task Scheduling for Real-time Object Detection: Methods and Performance Comparison in ADAS Applications
Mahdi Seyfipoor - Sayyed Muhammad Jaffry - Siamak Mohamadi
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
نقشه های شناختی فازی پیشرفته (FCM) رویکردی برای مدل سازی سیستم های پیچیده ی پویا
فریبا اسلامی امیرآبادی - کمال میرزایی بدرآبادی
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1