0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
نویسندگان :
Alireza Akhavan safaei
1
Pegah Saboori
2
Reza Ramezani
3
Morteza Tavana
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
4- شرکت آسمان رصد هادی
کلمات کلیدی :
Data Augmentation،Micro-Crack Detection،Convolutional Neural Network،Self-Supervised Learning،Transfer Learning
چکیده :
This study presents a method for the automatic identification of micro-cracks in photovoltaic solar modules using deep learning techniques. The main challenge in this research is the lack of labeled data and class imbalance for the detection of micro-cracks. The proposed method employs a multi-stage approach. Initially, 10% of the dataset is manually labeled to train a simple convolutional neural network model. This model is then used to generate pseudo-labels for the unlabeled data using a self-supervised approach. The pseudo-labels are manually reviewed to increase the number of micro-crack samples in the training set. Data augmentation techniques are also applied to increase the size and diversity of the training dataset. Finally, the pre-trained ResNet-50 model is fine-tuned on the expanded labeled dataset for accurate detection of micro-cracks. Advanced preprocessing steps, including solar cell segmentation, cropping, and data augmentation, have been performed. The class imbalance problem is addressed through undersampling and weighted loss functions. The experimental results demonstrate the effectiveness of the proposed method, achieving an accuracy of 0.9782 and an F1-score of 0.7776 in the detection of micro-cracks in electroluminescence images of solar panels. This study provides insights into the use of limited labeled data for training robust deep learning models for the identification of defects in solar modules.
لیست مقالات
لیست مقالات بایگانی شده
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
A Demand Response Schema in Industry: Smart Scheduling Approach for Industrial Processes
Negin Shafinezhad - Hamid Abrishami - Maryam Mahmoodi
OENMOP: Loss-Aware 4×4 and 5×5 and Scalable Non‑blocking Optical Switches Designed for Odd-Even Routing Algorithm for Chip-Scale Interconnection Networks
Negin Bagheri Renani - Elham Yaghoubi - Mina Mohammadirad
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
مهدی علیرضانژاد - عمار عبیس حسین المعموری
Towards Provable Privacy Protection in IoT-Health Applications
Samane Sobuti - دکتر سیاوش خرسندی
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
پیشبینی بستری مجدد بیماران با استفاده از استخراج مفاهیم زیستپزشکی از متون بالینی
فهیمه شاهرخ شهرکی - رسول سامانی - دکتر ناصر قدیری فهیمه شاهرخ شهرکی - رسول سامانی - ناصر قدیری -
مدیریت توأم منابع و خواب ایستگاه پایه مبتنی بر یادگیری تقویتی در شبکه های فوق متراکم با ارتباطات دو طرفه
طاهره رحمتی - بهروز شاهقلی قهفرخی
Data Analysis to Reduce Electrical Power Plants
Amirali Sahraei - Jamshid Shanbehzadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2