0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Knowledge Graph Based Retrieval-Augmented Generation for Multi-Hop Question Answering Enhancement
نویسندگان :
Mahdi Amiri Shavaki
1
Pouria Omrani
2
Ramin Toosi
3
Mohammad Ali Akhaee
4
1- دانشکده برق و کامپیوتر دانشگاه تهران
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشکده برق و کامپیوتر دانشگاه تهران
4- دانشکده برق و کامپیوتر دانشگاه تهران
کلمات کلیدی :
Graph RAG،Generative AI،LLM،Multi-hop QA،NLP
چکیده :
Multi-hop question answering (QA), which requires integrating information from multiple sources, poses significant challenges in natural language processing. Existing methods often struggle with effective retrieval across documents, leading to incomplete or inaccurate answers. Building upon Graph-based Retrieval-Augmented Generation (Graph RAG), we enhance multi-hop QA by leveraging structured knowledge graphs. Specifically, we construct individual knowledge graphs for each document, where entities are represented as nodes and the relationships between them as edges enriched with contextual properties. These individual graphs are then seamlessly integrated into a comprehensive, unified graph that captures cross-document relationships. Our method improves retrieval by utilizing vector embeddings of these graph relations, enabling more effective multi-hop reasoning across the interconnected data. To evaluate our approach, we assembled a dataset of 500 documents paired with 296 multi-hop questions requiring cross-document information retrieval. Our contributions include developing a novel graph-based retrieval mechanism that leverages vector embeddings of graph relations within the Graph RAG framework, and assembling a comprehensive dataset for multi-hop QA. Comparative experiments show that our enhanced Graph RAG method significantly outperforms the baseline in factual accuracy and semantic similarity, as measured by the RAGAS framework. Additionally, an LLM-based evaluator highlights our method's superior performance in answer comprehensiveness, empowerment, and directness.
لیست مقالات
لیست مقالات بایگانی شده
A parallel approach to the fractional time delay model for predicting the spread of COVID-19
Mahdi Movahedian Moghaddam - Kourosh Parand
Using Deconvolutional Variational Autoencoder for Answer Selection in Community Question Answering
Golshan Afzali Boroujeni - Heshaam Faili
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
Electrophysiological Modeling and Interactive Approaches of Electrical Circuits and Hypergraphs for Understanding Neural Circuit Dynamics
Arian Baymani - Maryam Naderi Soorki
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
OENMOP: Loss-Aware 4×4 and 5×5 and Scalable Non‑blocking Optical Switches Designed for Odd-Even Routing Algorithm for Chip-Scale Interconnection Networks
Negin Bagheri Renani - Elham Yaghoubi - Mina Mohammadirad
PersianRAG A Retrieval Augmented Generation System for Persian Language
Hossein Hosseini - Mohammad Sobhan Zare - Amir Hossein Mohammadi - Arefeh Kazemi - Zahra Zojaji - Mohammad Ali Nematbakhsh
پیشبینی بستری مجدد بیماران با استفاده از استخراج مفاهیم زیستپزشکی از متون بالینی
فهیمه شاهرخ شهرکی - رسول سامانی - دکتر ناصر قدیری فهیمه شاهرخ شهرکی - رسول سامانی - ناصر قدیری -
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1