0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
نویسندگان :
Fatemeh Rabbani
1
Behrooz Masoumi
2
Mohammad Reza Keyvanpour
3
1- دانشگاه آزاد اسلامی واحد قزوین
2- دانشگاه آزاد اسلامی واحد قزوین
3- دانشگاه الزهرا(س)
کلمات کلیدی :
Suicide risk, Random forest, unbalanced data, Classification
چکیده :
Suicide is one of the major concerns of public health. Studies indicate the increasing prevalence of suicide, especially among adolescents. The risk factors of suicide include biological, psychological, clinical, social, and environmental factors. Involvement of various risk factors in suicide means that suicide risk in an individual is challenging; thus, to identify high-risk groups in public, a suicide risk prediction model is necessary. Today, employing machine learning and classification methods are widely used to predict suicide risk. One of the challenges of this context is unbalanced data that affect the efficiency of the prediction model. In this paper, two sampling methods are proposed to improve the performance of classifying unbalanced data, aiming to evaluate suicide risk in adolescents. In the proposed method, after balancing the dataset using sampling methods, the data is classified using random forest. The results show that the total accuracy of predicting suicide in adolescents is 0.99, with a sensitivity of 1 and specificity of 0.98. Therefore, the random forest model can predict suicide risk with high accuracy.
لیست مقالات
لیست مقالات بایگانی شده
ارائه یک الگوریتم سلسله مراتبی جهت تشخیص نفوذ در شبکه های کامپیوتری
دکتر باقر رحیم پور کامی - سیدمحمد سیدی برشی باقر رحیم پور کامی - سیدمحمد سیدی برشی -
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
Human Resource Allocation to the Credit Requirement Process, A Process Mining Approach
Omid Mahdi Ebadati - Mohammad Mehrabioun - Shokoofeh Sadat Hosseini
سیستم پیشنهاددهنده غذای سالم با استفاده از داده کاوی عادت های تغذیه ای کاربران
محمد عباسی - مریم حسینی پزوه - محمدرضا شمس
Revert Propagation: Who are responsible for a contagion initialization in a Diffusion Network?
Arman Sepehr - Mohammadzaman Zamani - Hamid Beigy - Shabnam Behzad
A New Method Based on Deep Learning and Time Stabilization of the Propagation Path for Fake News Detection
Fatemeh Torgheh - Dr Mohammad Reza Keyvanpour - Dr Behrooz Masoumi
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
Sparse Beamforming Design for Non-Coherent UD-CRAN with mm-Wave Fronthaul Links
Alireza M. Hosseini - Dr Abbas Mohammadi
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2