0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Customer Churn Prediction Using Data Mining Techniques for an Iranian Payment Application
نویسندگان :
Olya Rezaeian
1
ُSeyedhamidreza Shahabi Haghighi
2
Jamal Shahrabi
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیر کبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Customer Churn, Data Mining, Imbalance Data, RFM Model
چکیده :
Customer Relationship Management (CRM) and data-driven marketing have become of paramount importance in this age of evolved markets and fierce competition among businesses. One of the most important branches of CRM is retaining existing customers. Since customer acquisition is about 5 to 6 times more costly than retaining customers, achieving an accurate model for customer churn prediction is essential to devise marketing retention strategies. Therefore, in this study, ensemble models are proposed to predict customer churn. Since customer churn is a rare occurrence in an organization and causes an imbalanced distribution in the target variable, ensemble learning algorithms, one of the most efficient and widely used methods, have been used to deal with this problem. With regard to the case study, the dataset was generated on demographic and 13-month transactions of users of an Iranian payment application. In this study, the best model to predict customer churn is the bagging version of Decision Tree, reaching the highest accuracy, f-measure and AUC.
لیست مقالات
لیست مقالات بایگانی شده
کاربردهای هوش مصنوعی در خلق ارزش مشترک: بینشهایی از تجربیات نوظهور
فاطمه مقدسی فریدنی - مونا جامیپور - شهناز اکبری امامی
HTCAR: Hierarchical Text Classification based on aggregation of Representations
Ali Bavand - Mohammad Mehdi Homayounpour - Ahmad Nickabadi
Scattering Wavelet-Based Image Quality Assessment Metric for Medical Images
Sina Omidvar - Jamshid Shanbehzadeh
A Joint Trajectory and Energy Harvesting Method for an UAV Enabled Disaster Response Network
Hosein Mohammadi Firozjae - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
پیشبینی بازار فارکس با استفاده از نمودار شمعی و شبکهی عصبی GRU
محمدرضا نوروزی - مریم مومنی
Application of Artificial Intelligence and Remote Sensing for Oil Spill Detection
َAmir Reza Ziaee - Masomeh Azimzadeh - Parvin Ahmadi
Dealing with Black-hole Attacks in Inter-vehicle Networks Using the Packet Delivery Rate Algorithm
Marzieh Sedighi - Mehdi Hamidkhani - Mostafa Sadeghi
Binary water stream algorithm: a new meta-heuristic optimization technique
Faezeh Rahimi Sebdani - Mehdi Nasri
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
حفظ حریم خصوصی در انتشار نسخه های متوالی دادههای شبکه اجتماعی با امکان افزایش یال
طاهره سرزهی - دکتر مهری رجایی طاهره سرزهی - مهری رجایی -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2