0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Customer Churn Prediction Using Data Mining Techniques for an Iranian Payment Application
نویسندگان :
Olya Rezaeian
1
ُSeyedhamidreza Shahabi Haghighi
2
Jamal Shahrabi
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیر کبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Customer Churn, Data Mining, Imbalance Data, RFM Model
چکیده :
Customer Relationship Management (CRM) and data-driven marketing have become of paramount importance in this age of evolved markets and fierce competition among businesses. One of the most important branches of CRM is retaining existing customers. Since customer acquisition is about 5 to 6 times more costly than retaining customers, achieving an accurate model for customer churn prediction is essential to devise marketing retention strategies. Therefore, in this study, ensemble models are proposed to predict customer churn. Since customer churn is a rare occurrence in an organization and causes an imbalanced distribution in the target variable, ensemble learning algorithms, one of the most efficient and widely used methods, have been used to deal with this problem. With regard to the case study, the dataset was generated on demographic and 13-month transactions of users of an Iranian payment application. In this study, the best model to predict customer churn is the bagging version of Decision Tree, reaching the highest accuracy, f-measure and AUC.
لیست مقالات
لیست مقالات بایگانی شده
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Morteza Tavana
Challenges of Specification Mining-based Test Oracle for Cyber-Physical Systems
Maryam Raiyat Aliabadi - Dr Mojtaba Vahidi - Dr Ramak Ghavamizadeh
بررسی تأثیر استقرار استاندارد COBIT در افزایش بهره وری سازمانها (مطالعه موردی: شعب نمایندگیهای همراه اول، ایرانسل، رایتل)
دکتر محمد ابراهیم سمیع - ساره رحمانیان محمد ابراهیم سمیع - ساره رحمانیان -
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
PeCoQ: A Dataset for Persian Complex Question Answering over Knowledge Graph
Romina Etezadi - Mehrnoush Shamsfard
پیش بینی گره های رهبر در شبکه های اجتماعی با استفاده از پیش بینی پیوند
روح اله رشیدی - فرساد زمانی بروجنی - محمد رضا سلطان آقایی - هادی فرهادی
Face Recognition Based on Local Statistical Features and Artificial Neural Network
Mehdi Moghimi - Dr Hadi Grailu
بیشینهسازی تأثیر در شبکههای اجتماعی بر اساس فعالیت کاربران
فاطمه جعفری - علیرضا رضوانیان
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
تخلیهبار محاسباتی ریزدانه تحرکآگاه در رایانش لبه برای اینترنت اشیاء
شکوفه نوروزی - دکتر زینب موحدی شکوفه نوروزی - زینب موحدی -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2