0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
نویسندگان :
Shaghayegh Mehdizadeh saraj
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
1- Kharazmi University
2- Kharazmi University
3- Kharazmi University
کلمات کلیدی :
Neuron threshold،Spiking Neural Networks،Time depend coding،Artifical intelligence
چکیده :
With artificial intelligence's tremendous progress in the past decades, the demand for applying artificial intelligence algorithms and architectures in cloud computing has increased. In this regard, the need for neuromorphic hardware that enables training and processing of data generated by edge devices has increased. Different algorithms have been presented in this direction, but they consume a lot of energy and space due to the large number of calculations. Therefore, researchers tried to minimize energy consumption while maintaining accuracy in deep spiking neural networks as the least consuming generation of neural networks. In order to achieve this goal and reduce the number of references to the required memory and space, they have provided various hardware and software methods. In this article, the best architecture is used by examining the amount of energy consumed and the accuracy of different methods of architecture. Also, a hybrid method is proposed to reduce energy consumption in spiking neural networks. The proposed hybrid architecture was implemented on the MNIST dataset, showing that the power consumption is reduced by almost 1% compared to the state-of-the-art architectures. The accuracy of the proposed hybrid algorithm is 95.3%, which is the highest when compared to the architectures using the time-based coding.
لیست مقالات
لیست مقالات بایگانی شده
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Revert Propagation: Who are responsible for a contagion initialization in a Diffusion Network?
Arman Sepehr - Mohammadzaman Zamani - Hamid Beigy - Shabnam Behzad
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
A Potential Solutions-Based Parallelized GA for Application Graph Mapping in Reconfigurable Hardware
Seyed Mehdi Mohtavipour - Hadi Shahriar Shahhoseini
Binary water stream algorithm: a new meta-heuristic optimization technique
Faezeh Rahimi Sebdani - Mehdi Nasri
IoMT-Enabled Smart Healthcare: State-of-the-Art, Security and Future Directions
Shivam Tripathi - Vatsalkumar Makwana - Malaram Kumhar - Harshal Trivedi - Jitendra Bhatia - Sudeep Tanwar - Hossein Shahinzadeh
امنیت در اینترنت اشیا؛ معماری، کاربردها، چالشها و راهکارها
مهدی موسی وند - دکتر پیام محمودی نصر مهدی موسی وند - پیام محمودی نصر -
AOV-IDS: Arithmetic Optimizer with Voting classifier for Intrusion Detection System
Amir Soltany Mahboob - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
An Improved Drone Detection Method Using Deep Learning for Augmentation Detection Speed
Mohammad Bahrami - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti - Sajjad Ansaria
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1