0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
نویسندگان :
Shaghayegh Mehdizadeh saraj
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
1- Kharazmi University
2- Kharazmi University
3- Kharazmi University
کلمات کلیدی :
Neuron threshold،Spiking Neural Networks،Time depend coding،Artifical intelligence
چکیده :
With artificial intelligence's tremendous progress in the past decades, the demand for applying artificial intelligence algorithms and architectures in cloud computing has increased. In this regard, the need for neuromorphic hardware that enables training and processing of data generated by edge devices has increased. Different algorithms have been presented in this direction, but they consume a lot of energy and space due to the large number of calculations. Therefore, researchers tried to minimize energy consumption while maintaining accuracy in deep spiking neural networks as the least consuming generation of neural networks. In order to achieve this goal and reduce the number of references to the required memory and space, they have provided various hardware and software methods. In this article, the best architecture is used by examining the amount of energy consumed and the accuracy of different methods of architecture. Also, a hybrid method is proposed to reduce energy consumption in spiking neural networks. The proposed hybrid architecture was implemented on the MNIST dataset, showing that the power consumption is reduced by almost 1% compared to the state-of-the-art architectures. The accuracy of the proposed hybrid algorithm is 95.3%, which is the highest when compared to the architectures using the time-based coding.
لیست مقالات
لیست مقالات بایگانی شده
تحلیل کتابسنجی از مقالات حوزه دوقلوهای دیجیتال
فاطمه مکی زاده - سارا صراف - مصطفی شیرالی
رویکردی در تشخیص خودکار بوهای بد در مدل های معماری سازمانی با استفاده از تحلیل گرافی
زهرا رحیمی تمندگانی - شهره آجودانیان
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
بیشینهسازی تأثیر در شبکههای اجتماعی بر اساس فعالیت کاربران
فاطمه جعفری - علیرضا رضوانیان
Movable Antenna Design for UAV-Aided Federated Learning via Deep Reinforcement Learning
MOHSEN Ahmadzadeh - Saeid Pakravan - Ghosheh Abed Hodtani
ارائه یک الگوریتم سلسله مراتبی جهت تشخیص نفوذ در شبکه های کامپیوتری
دکتر باقر رحیم پور کامی - سیدمحمد سیدی برشی باقر رحیم پور کامی - سیدمحمد سیدی برشی -
Aspect-Based Sentiment Analysis of After-Sales Service Quality: A Case Study of Snowa and Competitors Using Digikala Reviews
Safiyeh Samadanian - Marjan Kaedi
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
Cryptanalysis of two password authenticated key exchange schemes
Mohammad Ali Poorafsahi - Hamid Mala
A Blockchain Architecture for Secure, High-Speed P2P Energy Trades with Game-Theoretic Coalition Formation
Amin Aboutalebi Najafabadi - Seyed Hossein Hosseinian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2