0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
نویسندگان :
Shaghayegh Mehdizadeh saraj
1
Seyyed Amir Asghari
2
Mohammadreza Binesh Marvasti
3
1- Kharazmi University
2- Kharazmi University
3- Kharazmi University
کلمات کلیدی :
Neuron threshold،Spiking Neural Networks،Time depend coding،Artifical intelligence
چکیده :
With artificial intelligence's tremendous progress in the past decades, the demand for applying artificial intelligence algorithms and architectures in cloud computing has increased. In this regard, the need for neuromorphic hardware that enables training and processing of data generated by edge devices has increased. Different algorithms have been presented in this direction, but they consume a lot of energy and space due to the large number of calculations. Therefore, researchers tried to minimize energy consumption while maintaining accuracy in deep spiking neural networks as the least consuming generation of neural networks. In order to achieve this goal and reduce the number of references to the required memory and space, they have provided various hardware and software methods. In this article, the best architecture is used by examining the amount of energy consumed and the accuracy of different methods of architecture. Also, a hybrid method is proposed to reduce energy consumption in spiking neural networks. The proposed hybrid architecture was implemented on the MNIST dataset, showing that the power consumption is reduced by almost 1% compared to the state-of-the-art architectures. The accuracy of the proposed hybrid algorithm is 95.3%, which is the highest when compared to the architectures using the time-based coding.
لیست مقالات
لیست مقالات بایگانی شده
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
Mahdi Kalbasi
Presenting an Edge-based Air Quality Management System for Smart City Scenarios
Tina Samizadeh Nikoui - Ali Balador - Amir Masoud Rahmani - Hooman Tabarsaied
بهبود رهگیری در زنجیره تامین با استفاده از فناوری زنجیره بلوکی
سید عماد موسوی - مهرداد آشتیانی
Adaptive Stopping Criteria-based A-RANSAC algorithm in Copy Move Image Forgery detection
ZAHRA HOSEINNEJAD - Dr MEHDI NASRI
پیشبینی میزان بقای بیماران مبتلا به سرطان ریه با استفاده از ترکیب کارآمد روشهای دادهکاوی و بهینهسازی رقابت استعماری
رخشان رمضانی سرچشمه - مهدی هاشمزاده - امین گلزاری اسکوئی
تشخیص حمله تزریق داده کاذب با روش OCD در شبکه هوشمند برق
محدثه جلیلی سنجرانی - سعید جلیلی - محمدکاظم شیخ الاسلامی
A perceptual loss for screen content image super-resolution
Hossein Sekhavaty-Moghadam - Marzieh Hosseinkhani - Dr Azadeh Mansouri
A qualitative spoofing detection system based on LSTMs for IoMT
Iman Jafarian - Amirmasoud Sepehrian - Siavash Khorsandi
A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms
Maryam Eslami - Dr Mehdi Sakhaei-nia
ParaKavosh: A Parallel Algorithm for Finding Biological Network Motifs
Dr Zahra Razaghi Moghadam Kashani - Dr Ali Masoudi-nejad - Dr Abbas Nowzari-dalini
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1