0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
نویسندگان :
Mahdi Kalbasi
1
1- University of Isfahan
کلمات کلیدی :
Systolic arrays،Convolutional Neural Networks،Output stationary،Weight stationary
چکیده :
This paper compares two prevalent architectures in systolic arrays: weight stationary and output stationary methods. Systolic arrays utilize interconnected processing elements (PEs) to perform parallel processing, making them suitable for applications in digital signal processing, image processing, and machine learning. We focus on their implementation of 2D matrix multiplication, a fundamental operation in neural networks. Simulations were conducted using Verilog HDL within the Xilinx Vivado Design Suite 2019, employing a 3x1 input matrix and a 3x3 weight matrix. Results confirmed the functionality of both architectures, with output matrices matching expected results. Weight stationary designs minimized data movement, while output stationary designs enhanced throughput through effective input data reuse. With a critical path delay of approximately 8.8 ns, corresponding to a maximum frequency of about 113 MHz, the study highlights that the critical path remains stable when scaling the number of PEs. Overall, this research validates the effectiveness of both architectures in high-performance matrix operations, offering valuable insights for future systolic array designs.
لیست مقالات
لیست مقالات بایگانی شده
Ensemble Model Based on an Improved Convolutional Neural Network with a Domain-agnostic Data Augmentation Technique
Faraz Fatahnaie - Armin Azhdehnia - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
Arshia Hemmat - Mohammad Hassan Heydari - Kianoosh Vadaei - Afsaneh Fatemi
Automatic Analysis of Inconsistencies in Inter-Enterprise Business Processes: Introducing a Formal Adaptation Patterns Catalog
Somayeh Ashourian - Shohreh َAjoudanian
A Survey on Utilizing Reinforcement Learning in Wireless Sensor Networks Routing Protocols
Ali Forghani Elah Abadi - Seyedeh Elham Asghari - Sepideh Sharifani - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
نظرکاوی در سطح مفهوم با استفاده از رویکردی ترکیبی
سیدرضا قادریان خیرآبادی سیدرضا قادریان خیرآبادی -
یک روش خوشه بندی گره ها برای شبکه های حسگر بیسیم با هدف بهبود متوازن سازی بار مبتنی بر تکنیک تاپسیس
راضیه حسین رضایی - فهیمه یزدان پناه
Integrating Wasserstein GANs for High-Speed Transformer-Based Neural Machine Translation
Parisa Nekoogol - Mostafa Salehi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2