0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
نویسندگان :
Mahdi Kalbasi
1
1- University of Isfahan
کلمات کلیدی :
Systolic arrays،Convolutional Neural Networks،Output stationary،Weight stationary
چکیده :
This paper compares two prevalent architectures in systolic arrays: weight stationary and output stationary methods. Systolic arrays utilize interconnected processing elements (PEs) to perform parallel processing, making them suitable for applications in digital signal processing, image processing, and machine learning. We focus on their implementation of 2D matrix multiplication, a fundamental operation in neural networks. Simulations were conducted using Verilog HDL within the Xilinx Vivado Design Suite 2019, employing a 3x1 input matrix and a 3x3 weight matrix. Results confirmed the functionality of both architectures, with output matrices matching expected results. Weight stationary designs minimized data movement, while output stationary designs enhanced throughput through effective input data reuse. With a critical path delay of approximately 8.8 ns, corresponding to a maximum frequency of about 113 MHz, the study highlights that the critical path remains stable when scaling the number of PEs. Overall, this research validates the effectiveness of both architectures in high-performance matrix operations, offering valuable insights for future systolic array designs.
لیست مقالات
لیست مقالات بایگانی شده
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
IT-based and Non-IT-based methods to separate and collect waste
Hoda Harati - Farzad Haghighi-Rad - Reza Yousefi Zenouz
یک سیستم پاسخ به نفوذ در شبکه های اینترنت اشیاء با استفاده از شبکه های مبتنی بر نرم افزار
احسان شاهرخی مینا - رضا محمدی - محمد نصیری
A New Method Based on Deep Learning and Time Stabilization of the Propagation Path for Fake News Detection
Fatemeh Torgheh - Dr Mohammad Reza Keyvanpour - Dr Behrooz Masoumi
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Benchmarking Embedding Models for Persian-Language Semantic Information Retrieval
Mahmood Kalantari - Mehdi Feghhi - Nasser Mozayani
A clonal selection mechanism for load balancing in the cloud computing system
Melika Mosayyebi - Reza Azmi
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4