0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
نویسندگان :
Moein-Aldin AliHosseini
1
MohammadReza Sharbaf
2
1- دانشگاه اصفهان
2- دانشگاه اصفهان
کلمات کلیدی :
Model-Driven Development،No-Code Platforms،Electronic Commerce،Recommender Systems
چکیده :
Abstract—With the rapid growth of e-commerce and the increasing importance of recommender systems in enhancing customer experience, there is a pressing need for customized systems that can be quickly developed in collaboration with domain experts. In the restaurant industry, this need is particularly acute, as consumers seek personalized dining experiences that cater to their unique tastes and preferences. Effective recommender systems can assist restaurants not only in suggesting menu items based on individual customer profiles but also in adapting to local trends, dietary restrictions, and seasonal ingredients. In this paper, we introduce CURSOR, a novel nocode platform designed to automatically develop customizable recommender systems for restaurants. CURSOR enables businesses to design and deploy tailored systems without the need to hire specialized development teams. Our evaluation results demonstrate that CURSOR reduces development time, lowers costs, and enhances system performance for restaurants. The output from CURSOR enhances customer experience by providing personalized suggestions, which in turn increases satisfaction and encourages purchases.
لیست مقالات
لیست مقالات بایگانی شده
A clonal selection mechanism for load balancing in the cloud computing system
Melika Mosayyebi - Reza Azmi
IoT-Based Model in Smart Urban Traffic Control: Graph theory and Genetic Algorithm
Saeed Doostali - Seyed Morteza Babamir - Mohammad Shiralizadeh Dezfoli - Behzad Soleimani Neysiani
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
Fast Online Character Recognition Using a Novel Local-Global Feature Extraction Method
Ayoub Parvizi - Dr Mohammad Kazemifard - Ziba Imani
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
ParsEL 1.0: Unsupervised Entity Linking in Persian Social Media Texts
Majid Asgari-bidhendi - Farzane Fakhrian - Dr Behrouz Minaei-bidgoli
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
تشخیص ارتباط معنایی در استکاورفلو با رمزگذار جمله جهانی
مجید دلیری - جعفر حبیبی - عیسی انامرادنژاد
A Data-Efficient Approach to Solar Panel Micro-Crack Detection via Self-Supervised Learning
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Morteza Tavana
پیشبینی میزان بقای بیماران مبتلا به سرطان ریه با استفاده از ترکیب کارآمد روشهای دادهکاوی و بهینهسازی رقابت استعماری
رخشان رمضانی سرچشمه - مهدی هاشمزاده - امین گلزاری اسکوئی
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1