0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A perceptual loss for screen content image super-resolution
نویسندگان :
Hossein Sekhavaty-Moghadam
1
Marzieh Hosseinkhani
2
Azadeh Mansouri
3
1- خوارزمی تهران
2- خوارزمی تهران
3- خوارزمی تهران
کلمات کلیدی :
single image super-resolution, deep learning, neural networks, loss function, screen content images
چکیده :
The acceptable results of deep learning led to the use of the deep neural network on a wide range of models, including image super-resolution. The performance of the deep neural network is directly affected by its loss function. Most methods use intensity loss, such as MSE, which computes the difference between the predicted image and the ground truth. Since the human visual system is more sensitive to the structural information of the scene, it is desired that the loss function could measure the impact of the structural error. The use of screen content images has become widespread because of many applications such as desktop-sharing and remote computing. As a result, super-resolution of screen content images becomes a crucial technique to enhance the quality of low-resolution images. In the presented loss function, the structural error is weighted employing DCT components. The model is trained and tested using the screen content images, and the experimental subjective and objective results illustrate the effectiveness of the presented loss for screen content images.
لیست مقالات
لیست مقالات بایگانی شده
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
A clonal selection mechanism for load balancing in the cloud computing system
Melika Mosayyebi - Reza Azmi
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
NFV-Based Distributed Service Function Chaining with Imperfect Information
Mahsa Alikhani - Marzieh Sheikhi - Dr Vesal Hakami
PersianRAG A Retrieval Augmented Generation System for Persian Language
Hossein Hosseini - Mohammad Sobhan Zare - Amir Hossein Mohammadi - Arefeh Kazemi - Zahra Zojaji - Mohammad Ali Nematbakhsh
توسعه مدل مفهومی طراحی فرآیند مدیریت بحران سیلاب از طریق بهینه سازی استفاده از دستگاه های اینترنت اشیاء (IoT Devices) در تصمیم گیری
محمود رسولی - سید احسان ملیحی
یک سیستم پاسخ به نفوذ در شبکه های اینترنت اشیاء با استفاده از شبکه های مبتنی بر نرم افزار
احسان شاهرخی مینا - رضا محمدی - محمد نصیری
ارائه یک مدل تصمیم گیری چند معیاره فازی به منظور بهبود دقت فرایند تصمیم گیری به هنگام اختلال هوانوردی
فاطمه عطا عبدالرزاق - نگار مجمع
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4