0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Handling Data Heterogeneity in Federated Medical Images Classification
نویسندگان :
Alireza Maleki
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
کلمات کلیدی :
Federated Learning،Data Heterogeneity،Medical Image Classification،Vision Transformer،SCAFFOLD
چکیده :
Deep learning-based medical image classification has significant problems with heterogeneity in the data generated by the variability of imaging equipment, protocols, and patient populations within institutions. Federated Learning (FL) suggests a solution by allowing collaborative model training across institutions while not actually sharing sensitive patient information, thus preserving privacy. However, the decentralized data's Non-Independent and Identically Distributed (Non-IID) nature presents fundamental challenges: data heterogeneity and client drift that lower model convergence and performance. To address these challenges, we propose a novel FL framework that integrates appropriate data augmentation, Vision Transformers (ViT), and the SCAFFOLD algorithm to neutralize client drift and enhance convergence in heterogeneous settings. Our approach supports federated training across decentralized medical facilities without raw data exchange, while preserving privacy and label skew and domain adaptation robustness. With testing on the FED-ISIC2019 dataset, we achieve improved performance, such as 86.02% global accuracy and 0.9759 AUC, over baselines like FedAvg and other state-of-the-art FL algorithms. Experiments confirm the key benefits of SCAFFOLD's control variates and conservative augmentation in stabilizing training and improving minority class handling. The work extends privacy-preserving collaborative learning in healthcare, demonstrating practical utility for real-world multi-institutional deployments. Code available at https://github.com/allirezamaleki/Federated-Medical-Image-Classification
لیست مقالات
لیست مقالات بایگانی شده
Two Novel Designs of Efficient Single-Bit Comparators in QCA Technology with Ultra-Low Energy Dissipation
Shobeir Fayazi - Hatam Abdoli
A hybrid CNN–transformer framework for retinal disease classification
Hanie Zomorrodi - Hassan Khotanlou
Real-Time EEG-Based Analysis Of Stress-Inducing Stimuli
Mohsen Mahmoudi - Fattaneh Taghiyareh - Yasamin Akhavein - Elnaz Ghorbani
Design and Simulation of an Accident Prevention System Based on Weather Conditions and Internet of Things
Forouzan Dastbaz - Abdolah Chalechale
ارائه یک سیستم توصیهگر آگاه به زمینه مبتنی بر رفتار کاربر در شبکه اجتماعی با استفاده از پیامهای برچسب شده جغرافیایی
زهرا امینی - سید علیرضا هاشمی گلپایگانی - علی میرزائی
SPA Bot: Smart Price-Action Trading Bot for Cryptocurency Market
Dr Hamid Jazayeriy - Mohammad Daryani
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
طه رستمی - دکتر سعید جلیلی طه رستمی - سعید جلیلی -
Target-driven Navigation of a Mobile Robot using an End-to-end Deep Learning Approach
Mohammad Matin Hosni - Ali Kheiri - Esmaeil Najafi
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
A Swarm Intelligence Approach to Design Optimal Repeaters in Multilayer Graphene Nanoribbon Interconnects
Majid Sanaeepur - Maryam Momeni
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2