0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Handling Data Heterogeneity in Federated Medical Images Classification
نویسندگان :
Alireza Maleki
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا
2- دانشگاه بوعلی سینا
کلمات کلیدی :
Federated Learning،Data Heterogeneity،Medical Image Classification،Vision Transformer،SCAFFOLD
چکیده :
Deep learning-based medical image classification has significant problems with heterogeneity in the data generated by the variability of imaging equipment, protocols, and patient populations within institutions. Federated Learning (FL) suggests a solution by allowing collaborative model training across institutions while not actually sharing sensitive patient information, thus preserving privacy. However, the decentralized data's Non-Independent and Identically Distributed (Non-IID) nature presents fundamental challenges: data heterogeneity and client drift that lower model convergence and performance. To address these challenges, we propose a novel FL framework that integrates appropriate data augmentation, Vision Transformers (ViT), and the SCAFFOLD algorithm to neutralize client drift and enhance convergence in heterogeneous settings. Our approach supports federated training across decentralized medical facilities without raw data exchange, while preserving privacy and label skew and domain adaptation robustness. With testing on the FED-ISIC2019 dataset, we achieve improved performance, such as 86.02% global accuracy and 0.9759 AUC, over baselines like FedAvg and other state-of-the-art FL algorithms. Experiments confirm the key benefits of SCAFFOLD's control variates and conservative augmentation in stabilizing training and improving minority class handling. The work extends privacy-preserving collaborative learning in healthcare, demonstrating practical utility for real-world multi-institutional deployments. Code available at https://github.com/allirezamaleki/Federated-Medical-Image-Classification
لیست مقالات
لیست مقالات بایگانی شده
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
Traffic Aware Routing in P4 Based Software Defined Networks
Ahmad Hamid - Reza Mohammadi
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
تشخیص حمله تزریق داده کاذب با روش OCD در شبکه هوشمند برق
محدثه جلیلی سنجرانی - سعید جلیلی - محمدکاظم شیخ الاسلامی
Predictive Maintenance using LSTM and Adaptive Windowing
Aien Ghanbari Adivi - Behrouz Shahgholi Ghahfarokhi
Improving Privacy Protection in a Collaborative Blockchain-based E-Health Records System
Arman Emam-Hoseini - Samane Sobuti - دکتر سیاوش خرسندی - Alireza Hashemi-Golpayeghani
Establishing security using cryptography and biometric authentication to counter cyber-attacks
Mohammed ADIL AKABR - Mehdi Hamidkhani - Mostafa Sadeghi
Information Technology Risk Management Model for Remote Control Vehicles
Hamid Reza Naji - Aref Ayati
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
An ESB-based Architecture for Authentication as a Service Through Enterprise Application Integration
Masoumeh Hashemi - Mehdi Sakhaei-nia - Morteza Yousef Sanati
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2