0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predictive Maintenance using LSTM and Adaptive Windowing
نویسندگان :
Aien Ghanbari Adivi
1
Behrouz Shahgholi Ghahfarokhi
2
1- University of Isfahan
2- University of Isfahan
کلمات کلیدی :
predictive maintenance،deep learning،LSTM،time series analysis
چکیده :
Predictive maintenance is a critical approach in modern industries, aiming to forecast equipment failures and reduce downtime by leveraging operational data. Traditional methods, such as time series analysis, struggle to capture complex temporal dependencies in large-scale datasets. In this study, we propose an innovative solution that integrates Long Short-Term Memory (LSTM) networks with an adaptive windowing strategy for predictive maintenance. Unlike conventional methods that rely on fixed window sizes, our approach dynamically adjusts the window size based on the data's characteristics, optimizing the temporal context provided to the model. We apply this method to the Microsoft Azure predictive maintenance dataset from Kaggle and demonstrate that the adaptive window size significantly enhances the precision of failure predictions. This research highlights the potential of combining LSTM with window size optimization to improve the accuracy and efficiency of predictive maintenance models in real-world industrial applications.
لیست مقالات
لیست مقالات بایگانی شده
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
SecVanet: provably secure authentication protocol for sending emergency events in VANET
Seyed Amir Mousavi - Mohammad Sadeq Sirjani - Seyyed Javad Bozorg zadeh Razavi - Morteza Nikooghadam
Dealing with Black-hole Attacks in Inter-vehicle Networks Using the Packet Delivery Rate Algorithm
Marzieh Sedighi - Mehdi Hamidkhani - Mostafa Sadeghi
Presentation of a New Decoder Based on Quantum Cellular Automata Technology Along with an Analysis of Energy Consumption
- - -
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
Vi-Net: A Deep Violent Flow Network for Violence Detection in Video Sequences
Tahereh Zarrat Ehsan - Seyed Mehdi Mohtavipour
Enhancing kNN-Based Intrusion Detection with Differential Evolution with Auto-Enhanced Population Diversity
Zohre Karimi - Zeinab Torabi
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1