0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predictive Maintenance using LSTM and Adaptive Windowing
نویسندگان :
Aien Ghanbari Adivi
1
Behrouz Shahgholi Ghahfarokhi
2
1- University of Isfahan
2- University of Isfahan
کلمات کلیدی :
predictive maintenance،deep learning،LSTM،time series analysis
چکیده :
Predictive maintenance is a critical approach in modern industries, aiming to forecast equipment failures and reduce downtime by leveraging operational data. Traditional methods, such as time series analysis, struggle to capture complex temporal dependencies in large-scale datasets. In this study, we propose an innovative solution that integrates Long Short-Term Memory (LSTM) networks with an adaptive windowing strategy for predictive maintenance. Unlike conventional methods that rely on fixed window sizes, our approach dynamically adjusts the window size based on the data's characteristics, optimizing the temporal context provided to the model. We apply this method to the Microsoft Azure predictive maintenance dataset from Kaggle and demonstrate that the adaptive window size significantly enhances the precision of failure predictions. This research highlights the potential of combining LSTM with window size optimization to improve the accuracy and efficiency of predictive maintenance models in real-world industrial applications.
لیست مقالات
لیست مقالات بایگانی شده
Aligning the Brick and Mortar cosmetic with digital transformation as the right way to overhaul the In-store Experience
Mehrgan Malekpour - Dr Federica Caboni
طراحی واسط کاربری مبتنی بر رفتار و احساسات کاربران در سیستم های هوشمند
فاطمه صبائی - دکتر احمد عبداله زاده بارفروش
بهبود عنواننگاری تصویر با استفاده از روشهای یادگیری عمیق
مهدی صیادجو - محمدجواد فدائی اسلام
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
Recommendation Systems in Smart Agriculture: Pathway to a well-designed system
Ahmad Nameni - Amir Ghafarian Daneshmand - Omid Mahdi Ebadati E
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
A qualitative spoofing detection system based on LSTMs for IoMT
Iman Jafarian - Amirmasoud Sepehrian - Siavash Khorsandi
مروری بر تشخیص جامعه در شبکه های اجتماعی
صفورا اخلاقی - محمدباقر منهاج - بهروز معصومی
A Potential Solutions-Based Parallelized GA for Application Graph Mapping in Reconfigurable Hardware
Seyed Mehdi Mohtavipour - Hadi Shahriar Shahhoseini
STANet: Spatio-Temporal Attention-Enhanced WaveNet for Crime Hotspot Prediction
Rojan Roshankar - Mohammad Reza Keyvanpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3