0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Predictive Maintenance using LSTM and Adaptive Windowing
نویسندگان :
Aien Ghanbari Adivi
1
Behrouz Shahgholi Ghahfarokhi
2
1- University of Isfahan
2- University of Isfahan
کلمات کلیدی :
predictive maintenance،deep learning،LSTM،time series analysis
چکیده :
Predictive maintenance is a critical approach in modern industries, aiming to forecast equipment failures and reduce downtime by leveraging operational data. Traditional methods, such as time series analysis, struggle to capture complex temporal dependencies in large-scale datasets. In this study, we propose an innovative solution that integrates Long Short-Term Memory (LSTM) networks with an adaptive windowing strategy for predictive maintenance. Unlike conventional methods that rely on fixed window sizes, our approach dynamically adjusts the window size based on the data's characteristics, optimizing the temporal context provided to the model. We apply this method to the Microsoft Azure predictive maintenance dataset from Kaggle and demonstrate that the adaptive window size significantly enhances the precision of failure predictions. This research highlights the potential of combining LSTM with window size optimization to improve the accuracy and efficiency of predictive maintenance models in real-world industrial applications.
لیست مقالات
لیست مقالات بایگانی شده
استخراج ویژگی مجموعه دادههای پزشکی دارای ابعاد بالا با استفاده از برنامه نویسی ژنتیک چند منظوره
سحر فقیهی راد - دکتر سیده نفیسه آل محمد سحر فقیهی راد - سیده نفیسه آل محمد -
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
Zahra Hossein-Nejad - Mehdi Nasri
Inner and Outer Bearing Fault Diagnosis of electrical Motors Using a Proposed Algorithm and Vibration Signals
Vahid Safari Dehnavi - Masoud Shafiee
پیاده سازی سیستم پیش بیمارستانی یافت آمبولانس مناسب در محیط رایانش ابری با استفاده از شبیه ساز کلودسیم
ریحانه حسن رحیمی - فهیمه یزدان پناه
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
A parallel approach to the fractional time delay model for predicting the spread of COVID-19
Mahdi Movahedian Moghaddam - Kourosh Parand
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
IT-based and Non-IT-based methods to separate and collect waste
Hoda Harati - Farzad Haghighi-Rad - Reza Yousefi Zenouz
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1