0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
نویسندگان :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
چکیده :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
لیست مقالات
لیست مقالات بایگانی شده
Context Awareness Gate for Retrieval Augmented Generation
Mohammad Hassan Heydari - Arshia Hemmat - Erfan Naman - Afsaneh Fatemi
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
پیشبینی بازار فارکس با استفاده از نمودار شمعی و شبکهی عصبی GRU
محمدرضا نوروزی - مریم مومنی
حفظ حریم خصوصی در انتشار نسخه های متوالی دادههای شبکه اجتماعی با امکان افزایش یال
طاهره سرزهی - دکتر مهری رجایی طاهره سرزهی - مهری رجایی -
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Dr Maryam Imani
Targeted Vaccination for COVID-19 Using Mobile Communication Networks
Mohammadmohsen Jadidi - Pegah Moslemi - Saeed Jamshidiha - Iman Masroori - Abbas Mohammadi - Vahid Pourahmadi
روش مهاجرت خوشهای برای بهبود بستربندی به مشتری در گردشکارهای بدون سرویسدهنده
محمدامین قسوری جهرمی - مهرداد آشتیانی - فاطمه بخشی
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
Paths-oriented Test Data Generation using Genetic Algorithm
Mohammad Reza Hassanpour Charmchi - Dr Bagher Rahimpour cami
DRL-Based Phase Optimization for O-RIS in Dual-Hop Hard Switching FSO/RIS-aided RF and UWOC Systems
Aboozar Heydaribeni - Hamzeh Beyranvand - Sahar Eslami
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2