0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
نویسندگان :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
چکیده :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
لیست مقالات
لیست مقالات بایگانی شده
تشخیص خودکار اختلال عروقی ماکولا با عنوان عروق گسترش یافته در تصاویر آنژیوگرافی حاصل از تصویربرداری OCTA
راضیه گنجی - دکتر محسن ابراهیمی مقدم - دکتر رامین نوری نیا
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
Optimal control of robotic hand for rehabilitation using fractional order systems and EEG signal processing
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Masoud Shafiee
مدیریت توأم منابع و خواب ایستگاه پایه مبتنی بر یادگیری تقویتی در شبکه های فوق متراکم با ارتباطات دو طرفه
طاهره رحمتی - بهروز شاهقلی قهفرخی
An approach to model the optimal service provisioning in vehicular cloud networks
Farhoud Jafari Kaleibar - Maghsoud Abbaspour
ParsEL 1.0: Unsupervised Entity Linking in Persian Social Media Texts
Majid Asgari-bidhendi - Farzane Fakhrian - Dr Behrouz Minaei-bidgoli
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Amir Mohammad Kouyeshpour - Hadi Veisi - Saman Haratizadeh
شناسایی حسابهای چندکاربره بر اساس ویژگیهای شخصیتی کاربران در پلتفرمهای پخش فیلم
مهسا رضائی - مرجان کائدی
Design and modeling of a waiter robot
Amin Mohammadnejad - Hami Tourajizadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4