0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
نویسندگان :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
چکیده :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
لیست مقالات
لیست مقالات بایگانی شده
3D Mesh ONoC: Design of low Insertion Loss and Non-blocking Optical Router and Efficient Routing Algorithm
Sanaz Asadinia - Elham Yaghoubi - Mostafa Sadeghi - Mahdi Mehrabi
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
SDN-based Deep Anomaly Detection For Securing Cloud Gaming Servers
Mohammadreza Ghafari - Dr Seyed Mostafa Safavi Hemami
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
ارائه یک رویکرد معنایی مبتنی بر آنتولوژی به منظور شناسایی تاکتیکهای معماری
احسان شریفی - دکتر احمد عبدالله زاده بارفروش
استخراج ویژگی مجموعه دادههای پزشکی دارای ابعاد بالا با استفاده از برنامه نویسی ژنتیک چند منظوره
سحر فقیهی راد - دکتر سیده نفیسه آل محمد سحر فقیهی راد - سیده نفیسه آل محمد -
تحویل بهینه جریان پخش زنده HTTP: یک رویکرد ترکیبی سرور- شبکه
فائزه امینی تهرانی - احمدرضا منتظرالقائم
Securing the Internet of Things via Blockchain-Aided Smart Contracts
S. Mohammadali Zanjani - Hossein Shahinzadeh - Jalal Moradi - Zohreh Rezaei - Bahareh Kaviani-Baghbaderani - Sudeep Tanwar
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2