0% Complete
English
صفحه اصلی
/
یازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
نویسندگان :
Farkhondeh Kiaee
1
1- دپارتمان مهندسی برق و کامپیوتر، دانشکده شریعتی، دانشگاه فنی و حرفهای استان تهران، ایران
کلمات کلیدی :
vehicle-to-grid, deep Learning, electric vehicles, reinforcement learning, double Q-network
چکیده :
The vehicle-to-grid (V2G) technology provides an opportunity to generate revenue by selling electricity back to the grid at peak times when electricity is more expensive. Instead of sharing a contaminated pump handle at a gas station during the current covid-19 pandemic, plugging in the electric vehicle (EV) at home makes feel much safer. A V2G control algorithm is necessary to decide whether the electric vehicle (EV) should be charged or discharged in each hour. In this paper, we study the real-time V2G control problem under price uncertainty where the electricity price is determined dynamically every hour. Our model is inspired by the Deep Q-learning (DQN) algorithm which combines popular Q-learning with a deep neural network. The proposed Double-DQN model is an update of the DQN which maintains two distinct networks to select or evaluate an action. The Double-DQN algorithm is used to control charge/discharge operation in the hourly available electricity price in order to maximize the profit for the EV owner during the whole parking time. Experiment results show that our proposed method can work effectively in the real electricity market and it is able to increase the profit significantly compared with the other state-of-the-art EV charging schemes.
لیست مقالات
لیست مقالات بایگانی شده
A parallel approach to the fractional time delay model for predicting the spread of COVID-19
Mahdi Movahedian Moghaddam - Kourosh Parand
Evaluating LLMs in Persian News Summarization
Arya VarastehNezhad - Reza Tavasoli - Mostafa Masumi - Seyed Soroush Majd - Mehrnoush Shamsfard
تشخیص ارتباط معنایی در استکاورفلو با رمزگذار جمله جهانی
مجید دلیری - جعفر حبیبی - عیسی انامرادنژاد
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
Moein-Aldin AliHosseini - MohammadReza Sharbaf
An OWA-Powered Dynamic Customer Churn Modeling in the banking industry Based on Customer Behavioral Vectors
Masoud Alizadeh - Mohammad Soleymannejad - Behzad Moshiri
تاثیر مدیریت دانش مشتری بر توسعه محصول جدید و نوآورانه با رویکرد مدل سازی معادلات ساختاری با استفاده از حداقل مربعات جزئی: مطالعۀ موردی شرکت کاله
دکتر آرش خسروی - سیده فاطمه حسینی - دکتر مرتضی رجب زاده آرش خسروی - سیده فاطمه حسینی - مرتضی رجب زاده -
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1