0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
نویسندگان :
Farnaz Salmanian
1
Hamid Jazayeri
2
Javad Kazemitabar
3
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
3- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Automated Bilateral Negotiation, Preferences Learning, Uncertain Information, Recursive Least Square Method
چکیده :
The negotiating agents are trying to reach a quality agreement during the process of automated negotiation. While each agent tries to improve its own utility, the agreement yields when the opponent reach in an acceptable utility as well. Therefore, learning the opponent’s preference during the negotiation is a challenging area of research. The opponent preferences modeled by two parameter vectors: the importance of negotiation issues, and the scoring value of each negotiation issue. In this study, the opponent model is updated by using an incremental recursive least square estimator. As time passes, the estimator reaches calculates the more accurate outcomes. By examining different negotiation domains, the computational experiments show the proposed method outperforms the recent studies.
لیست مقالات
لیست مقالات بایگانی شده
شناسایی و تحلیل ظرفیتهای استفاده از فناوری هوش مصنوعی در توسعه و بهبود شاخص مشارکت الکترونیکی
فرشاد حکمی زاده - عاطفه فرازمند
شناسایی حسابهای چندکاربره بر اساس ویژگیهای شخصیتی کاربران در پلتفرمهای پخش فیلم
مهسا رضائی - مرجان کائدی
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Amir Mohammad Kouyeshpour - Hadi Veisi - Saman Haratizadeh
Inner and Outer Bearing Fault Diagnosis of electrical Motors Using a Proposed Algorithm and Vibration Signals
Vahid Safari Dehnavi - Masoud Shafiee
Integrating Wasserstein GANs for High-Speed Transformer-Based Neural Machine Translation
Parisa Nekoogol - Mostafa Salehi
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
Particle Swarm Optimization-Based Framework for 3D Swarm Robotic Navigation Using Artificial Potential Field Dynamics
Samim Kamyab - Masoud Shirzadeh - Ghoncheh Zand
A Mathematical Optimization Approach for Preference Learning in Movie Recommender Systems with Shared Accounts
Milad Khademali - Fazlollah Aghamohammadi - Marjan Kaedi - Alireza Nasiri
A Foresight Approach to Cyber Threats Identification and Scenario Planning
MAHDI OMRANI - Masoud Shafiee - Siavash Khorsandi
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2