0% Complete
English
صفحه اصلی
/
یازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
نویسندگان :
Armin Salimi-badr
1
Mohammad Hashemi
2
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
کلمات کلیدی :
Parkinson's disease، gait cycle، Long-Short Term Memory (LSTM)، wearable sensors، biomedical time-series classification
چکیده :
Early detection of chronic diseases like Parkinson's Disease (PD), is necessary for effective medical treatments. In this paper, a neural approach based on using LSTM neural networks is proposed to diagnose patients suffering from PD. In this study, it is shown that the temporal patterns of the gait cycle are different for healthy persons and patients. Therefore, by using a recurrent structure like LSTM, able to analyze the dynamic nature of the gait cycle, the proposed method extracts the temporal patterns to diagnose patients from healthy persons. Utilized data to extract the temporal shapes of the gait cycle are based on changing vGRF, measured by 16 sensors placed in the soles of shoes worn by each subject. To reduce the number of data dimensions, the sequences of corresponding sensors placed in different feet (left and right) are combined by subtraction. This method analyzes the temporal pattern of time-series collected from different sensors, without extracting special features representing statistics of different parts of the gait cycle. Finally, by recording and presenting data from 10 seconds of subject walking, the proposed approach can diagnose the patient from healthy persons with an average accuracy of 97.66%, and the total F1-score equal to 97.78%.
لیست مقالات
لیست مقالات بایگانی شده
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
A New Sentence Ordering Method Using BERT Pretrained Model
Melika Golestanipour - Seyedeh Zahra Razavi - Dr Heshaam Faili
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
جایگذاری مقادیر ازدست رفته در داده های سری زمانی چندمتغیره برای پیش بینی مرگ ومیر بیماران با رویکرد یادگیری عمیق مبتنی بر مکانیسم توجه
سید علی هاشمی - سعید جلیلی
IoMT-Enabled Smart Healthcare: State-of-the-Art, Security and Future Directions
Shivam Tripathi - Vatsalkumar Makwana - Malaram Kumhar - Harshal Trivedi - Jitendra Bhatia - Sudeep Tanwar - Hossein Shahinzadeh
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
Improved Weighting in the Automated Texts Classification using Fuzzy Method
Hamidreza Sadrarhami - S. Mohammadali Zanjani - Ghazanfar Shahgholian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3