0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Robustness Gap in NLP Models for Vulnerability Descriptions: Benchmarking and Data Augmentation
نویسندگان :
AmirHossein Majd
1
Mahdi Yousefikia
2
Saghar Ghasemzadeh
3
Amirreza Asari
4
Arya Khoshnavataher
5
Seyedeh Leili Mirtaheri
6
1- University of Calabria
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
4- دانشگاه خوارزمی
5- دانشگاه خوارزمی
6- University of Calabria
کلمات کلیدی :
Software Vulnerabilities،Natural Language Processing،Robustness Benchmark،Noise Injection،Exploitability Prediction،Data Augmentation،Cybersecurity
چکیده :
Software vulnerability descriptions from CVE/NVD are the primary corpus for analysis, prioritization, and risk management in cybersecurity. Yet natural noise (typos, synonym substitutions, lexical variety) and adversarial perturbations undermine the accuracy and trustworthiness of NLP models. This paper presents, to our knowledge, the first systematic benchmark of NLP robustness on vulnerability descriptions. We train nine diverse architectures—lightweight transformers (MiniLM, MPNet, SBERT), hybrid models (BERT-LSTM, TextRCNN), and classical recurrent networks (BiLSTM, LSTM)—on a balanced dataset of over 56,000 real-world records from NVD and Exploit-DB, and fine-tune them for exploitability prediction. For comprehensive evaluation, we inject three noise families into test sets at levels from 10% to 80%: character-level edits (substitutions/swaps), synonym replacements using WordNet, and composite adversarial attacks generated with TextAttack. Performance declines across all models as noise rises, but vulnerability profiles differ: MiniLM attains the strongest clean-data score (F1 ≈ 0.933) yet is most brittle under character noise, whereas TextRCNN, despite a lower baseline, preserves comparatively higher stability in heavily perturbed conditions. Finally, we test a pragmatic hardening strategy—data augmentation with noisy variants followed by retraining—which consistently narrows robustness gaps across architectures without materially sacrificing clean-data accuracy. The benchmark and code enable reproducible evaluation and future robust modeling in cybersecurity.
لیست مقالات
لیست مقالات بایگانی شده
سیستم پیشنهاددهنده غذای سالم با استفاده از داده کاوی عادت های تغذیه ای کاربران
محمد عباسی - مریم حسینی پزوه - محمدرضا شمس
مدیریت توأم منابع و خواب ایستگاه پایه مبتنی بر یادگیری تقویتی در شبکه های فوق متراکم با ارتباطات دو طرفه
طاهره رحمتی - بهروز شاهقلی قهفرخی
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
نظرکاوی در سطح مفهوم با استفاده از رویکردی ترکیبی
سیدرضا قادریان خیرآبادی سیدرضا قادریان خیرآبادی -
Spatial On–Off Keying Modulation with Mirror-Array Optical IRSs for Indoor Machine-to-Machine Visible Light Communication
Babak Sadeghi - Seyed Mohammad Sajad Sadough
تخلیهبار محاسباتی ریزدانه تحرکآگاه در رایانش لبه برای اینترنت اشیاء
شکوفه نوروزی - دکتر زینب موحدی شکوفه نوروزی - زینب موحدی -
روش مهاجرت خوشهای برای بهبود بستربندی به مشتری در گردشکارهای بدون سرویسدهنده
محمدامین قسوری جهرمی - مهرداد آشتیانی - فاطمه بخشی
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
Revolutionizing Credit Scoring: The Synergy of Mamba State Space and CNN Models
Behnam Sabzalian
Context Awareness Gate for Retrieval Augmented Generation
Mohammad Hassan Heydari - Arshia Hemmat - Erfan Naman - Afsaneh Fatemi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2