0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Real-Time EEG-Based Analysis Of Stress-Inducing Stimuli
نویسندگان :
Mohsen Mahmoudi
1
Fattaneh Taghiyareh
2
Yasamin Akhavein
3
Elnaz Ghorbani
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- University of Tehran
کلمات کلیدی :
Electroencephalography،Real-Time Stress Detection،Machine Learning،User Modeling
چکیده :
The significance of understanding stress responses has gained increasing attention due to its profound impact on mental health and cognitive functioning. Prior studies have explored the potential of electroencephalography (EEG) in detecting stress, focusing on brain wave patterns like alpha and beta waves. There is a recognized need for the development of advanced methods that can offer real-time classification of stress induced by a wide range of stimuli. This research aims to develop a robust real-time EEG-based classification system to detect and analyze stress levels in response to various stress-inducing tasks. The methodology involved collecting EEG signals and analyzing them through signal processing and machine learning techniques. The Random Forest model was employed, achieving an accuracy of 71%. The model displayed a high level of precision in identifying stress, achieving perfect recall and F1 scores. The results indicate that different stressors elicit distinct EEG patterns, with cognitive tasks engaging the frontal brain regions more intensely, while emotional tasks show reduced frontal activity. The model's performance highlights its potential for real-time applications in stress management and mental health monitoring. These findings underscore the effectiveness of EEG in real-time stress detection and pave the way for more adaptive and personalized stress management systems.
لیست مقالات
لیست مقالات بایگانی شده
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
Shaghayegh Mehdizadeh saraj - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
Adaptive Stopping Criteria-based A-RANSAC algorithm in Copy Move Image Forgery detection
ZAHRA HOSEINNEJAD - Dr MEHDI NASRI
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
Mahdi Kalbasi
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
بیشینهسازی تأثیر در شبکههای اجتماعی بر اساس فعالیت کاربران
فاطمه جعفری - علیرضا رضوانیان
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1