0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
نویسندگان :
Arshia Hemmat
1
Mohammad Hassan Heydari
2
Kianoosh Vadaei
3
Afsaneh Fatemi
4
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
4- University of Isfahan
کلمات کلیدی :
Large Language Models،Natural Language Processing،Retrieval Augmented Generation،Dataset Generation،QuestionAnswering System
چکیده :
This paper introduces an innovative approach using Retrieval-Augmented Generation (RAG) pipelines with Large Language Models (LLMs) to enhance information retrieval and query response systems for university-related question answering. By systematically extracting data from the university's official website, primarily in Persian, and employing advanced prompt engineering techniques, we generate accurate and contextually relevant responses to user queries. We developed a comprehensive university benchmark, UniversityQuestionBench (UQB), to rigorously evaluate our system’s performance. UQB focuses on Persian-language data, assessing accuracy and reliability through various metrics and real-world scenarios. Our experimental results demonstrate significant improvements in the precision and relevance of generated responses, enhancing user experiences, and reducing the time required to obtain relevant answers. In summary, this paper presents a novel application of RAG pipelines and LLMs for Persian-language data retrieval, supported by a meticulously prepared university benchmark, offering valuable insights into advanced AI techniques for academic data retrieval and setting the stage for future research in this domain.\footnote{Dataset is publicly available at \url{https://huggingface.co/datasets/UIAIC/UQB}}
لیست مقالات
لیست مقالات بایگانی شده
بررسی کارآمدی فناوری وب 0.2 در پشتیبانی از فرآیندهای انسان محور و دانش مبنا
سید احسان ملیحی - فاطمه مشایخی کردکلا
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Mohamad Khorsandi - Alireza Dastmalchi Saei - Mohammadreza Sharbaf
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
A parallel approach to the fractional time delay model for predicting the spread of COVID-19
Mahdi Movahedian Moghaddam - Kourosh Parand
SecVanet: provably secure authentication protocol for sending emergency events in VANET
Seyed Amir Mousavi - Mohammad Sadeq Sirjani - Seyyed Javad Bozorg zadeh Razavi - Morteza Nikooghadam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1