0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
نویسندگان :
Ahmad Reza Nadafi
1
Farahnaz Mohanna
2
1- دانشگاه سیستان و بلوچستان
2- دانشگاه سیستان و بلوچستان
کلمات کلیدی :
tuberculosis،identification،reconstruction
چکیده :
A Tuberculosis (TB) is an infectious disease caused by the Mycobacterium that can be prevented and treated. The TB automatic identification as an AI tool can help physicians to see the TB bacteria on the microscopic sputum smear images of patients, then, to choose type of the treatment, the amount of medication prescribed, and other treatment measures. In this paper, an automatic method is proposed to identify and reconstruct the TB bacteria on the microscopic images. First, the input images are resized and enhanced. Next, the Convolutional Auto-Encoder Neural Network (CAENN) is applied. The convolution part of the CAENN identifies the TB in the input images during the training phase, extracts the features of the TB, and optimizes the weights of the CAENN. The Auto-Encoder part of the CAENN reduces the dimensions of the feature vector and uses this vector to reconstruct the shape of the TB on the detected locations in each input image. The proposed method simulation is done using the Python software. The simulation results of the proposed method on 10,000 images of the database show the identification accuracy of 99.93%, which is the highest compared to the state-of-art methods.
لیست مقالات
لیست مقالات بایگانی شده
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
قطعه بندی خودکار توده کلیه در تصاویر توموگرافی کامپیوتری با استفاده از همافزایی شبکه عصبی عمیق U-Net و الگوریتم فراابتکاری نهنگ
علی خلیلی - محمد مصلح - محمد خیراندیش
A No-Code Platform for Developing Customizable Recommender Systems for Restaurants
Moein-Aldin AliHosseini - MohammadReza Sharbaf
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
A Topic Based Method to Classify the Question Clarity in CQA Networks
Alireza Khabbazan - Dr Ahmad Ali Abin
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
SecVanet: provably secure authentication protocol for sending emergency events in VANET
Seyed Amir Mousavi - Mohammad Sadeq Sirjani - Seyyed Javad Bozorg zadeh Razavi - Morteza Nikooghadam
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1