0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Analysing effect of news polarity on stock market prediction: a machine learning approach
نویسندگان :
Golshid Ranjbaran
1
Mohammad-Shahram Moin
2
Sasan H Alizadeh
3
Abbas Koochari
4
1- دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
2- مرکز تحقیقات مخابرات ایران
3- مرکز تحقیقات مخابرات ایران
4- دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
کلمات کلیدی :
News, stock price prediction, sentiment analysis, machine learning
چکیده :
In finance, the stock market and its trends are volatile in nature. In the stock market, which is dynamic, complex, nonlinear and non-parametric, accurate forecasting is crucial for trading strategy. This need attracted researchers to detect fluctuations and to predict the next move. It is assumed that news articles affect the stock market. In this work, non-measurable data like financial news headlines has been transferred into the measurable data. We investigated the relationship between news and their impact on stock prices. To show this relationship, we applied the sentiment analysis data and the price difference between the day before the news was published and the day of the news to the classic machine learning models such as SVR, BayesianRidge, LASSO, Decision tree and Random forest. The observations showed that SVM performs well in all tests. The prediction error in this model is 0.35, which is much less than that of the random news tagging. Also based on our tests, using a computer for tagging is as good as manual tagging.
لیست مقالات
لیست مقالات بایگانی شده
تولید خودکار موارد آزمون برای پوشش مسیر اصلی با الگوریتم جایا
ُSaba Yadegari - Mohammad-Reza Keyvanpour
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
Cryptanalysis of two password authenticated key exchange schemes
Mohammad Ali Poorafsahi - Hamid Mala
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
A Hybrid Crow Search and Penguin Optimization Algorithm (CPMM) for Efficient Cloud Workflow Scheduling
Reza Akraminejad - Farhad Kazemipour - Mozhdeh Koreh Davoodi
Binary water stream algorithm: a new meta-heuristic optimization technique
Faezeh Rahimi Sebdani - Mehdi Nasri
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
A Mathematical Optimization Approach for Preference Learning in Movie Recommender Systems with Shared Accounts
Milad Khademali - Fazlollah Aghamohammadi - Marjan Kaedi - Alireza Nasiri
Knowledge Graph Based Retrieval-Augmented Generation for Multi-Hop Question Answering Enhancement
Mahdi Amiri Shavaki - Pouria Omrani - Ramin Toosi - Mohammad Ali Akhaee
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1