0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Context Awareness Gate for Retrieval Augmented Generation
نویسندگان :
Mohammad Hassan Heydari
1
Arshia Hemmat
2
Erfan Naman
3
Afsaneh Fatemi
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
4- دانشگاه اصفهان
کلمات کلیدی :
Retrieval-Augmented Generation،Hallucination،Large Language Models،Open Domain Question Answering
چکیده :
Retrieval-augmented generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions. Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline. However, despite ongoing advancements, the critical issue of retrieving irrelevant information—which can impair a model’s ability to utilize its internal knowledge effectively—has received minimal attention. In this work, we investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs. To address this challenge, we propose the Context Awareness Gate (CAG) architecture, a novel mechanism that dynamically adjusts the LLM’s input prompt based on whether the user query necessitates external context retrieval. Additionally, we introduce the Vector Candidates method, a core mathematical component of CAG that is statistical, LLM-independent, and highly scalable. We further examine the distributions of relationships between contexts and questions, presenting a statistical analysis of these distributions. This analysis can be leveraged to enhance the con- text retrieval process in retrieval-augmented generation (RAG) systems.
لیست مقالات
لیست مقالات بایگانی شده
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
Dr Mahila Dadfarnia - Ali Alemi Matinpour - Dr Monireh Abdoos
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
ارائه یک مدل تصمیم گیری چند معیاره فازی به منظور بهبود دقت فرایند تصمیم گیری به هنگام اختلال هوانوردی
فاطمه عطا عبدالرزاق - نگار مجمع
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
A Hybrid Method to Reduce the Voltage Consumption in the Spiking Neural Networks
Shaghayegh Mehdizadeh saraj - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1