0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
نویسندگان :
مهدی علیرضانژاد
1
عمار عبیس حسین المعموری
2
1- عضو هیات علمی دانشگاه آزاد اسلامی واحد فیروزکوه
2- دانشجو کارشناسی ارشد مهندسی کامپیوتر ، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)
کلمات کلیدی :
اینترنت اشیا،الگوریتم بهینهسازی گرگ خاکستری،الگوریتم ازدحام ذرات،جنگل تصادفی
چکیده :
با توجه به پیشرفتهای فناوری مانند اینترنت اشیاء، رایانش ابری، دستگاهها و خدمات شبکه به طور مداوم در حال افزایش هستند و پیچیدگی شبکه را افزایش میدهند که باعث ایجاد چالشهایی در حفظ امنیت شبکه به دلیل پیچیدگی روزافزون شبکه میشود. توسعه این فناوری ها باعث شده تا مصرف کنندگان زیادی در سطح جهانی به سمت آنها سوق پیدا کنند و فرصت های زیادی را برای کسب و کارها به ارمفان بیاورد. از سوی دیگر، افزایش تعداد تجهیزات و دستگاه ها در اینترنت اشیاء باعث شده تا انواع مختلف حملات را برای فرار از امنیت شبکه اینرنت اشیا کشف و از آنها سوء استفاده شود. از این رو، مراقبت از ایمنی شبکه های اینترنت اشیا ضروری است. ابزارها و راه حل های مختلفی برای مبارزه با انواع مختلف حملات شبکه مانند دیوارهای آتش، ضد بدافزارها و فیلترهای هرزنامه وجود دارد. نمونه هایی از ابزارها و تکنیک های مختلف شامل سیستم تشخیص نفوذ مبتنی بر ناهنجاری است و سیستم تشخیص نفوذ می تواند یک ابزار امنیتی ضروری و بسیار ارزشمند برای تضمین امنیت شبکه اینترنت اشیاء باشد. بررسی مطالعات انجام شده جهت تشخیص نفوذ در اینترنت اشیاء نشان داده که مجموعه دادههای با ابعاد بالا که دادههای شبکه دنیای واقعی را شبیهسازی میکنند، پیچیدگی و زمان پردازش آموزش و آزمایش سیستم را افزایش میدهند، در حالی که ویژگیهای نامربوط منابع را هدر میدهند و نرخ تشخیص را کاهش میدهند. در این پژوهش یک مدل تشخیص نفوذ ارائه شده است که از مدل ترکیبی بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی به جهت بهبود تشخیص نفوذ هوشمند مبتنی بر ناهنجاری برای شبکه اینترنت اشیاء ارائه دهد. در این پژوهش، الگوریتم های بهینهسازی گرگ خاکستری و ازدحام ذرات برای انتخاب ویژگی استفاده می شوند و سپس از جنگل تصادفی برای طبقه بندی داده ها استفاده می شود. از چهار مجموعه داده NSL-KDD، KDDCUP99، ADFA و UNSW-NB15 برای ارزیابی مدل پیشنهادی و دیگر الگوریتم ها استفاده گردید و نتایج تجربی نشان میدهد که مدل پیشنهادی عملکرد بهتری نسبت به سایر تکنیکها از نظر دقت، صحت، فراخوانی، امتیاز F1، نرخ خطای کمتر و توانایی بهتر در تشخیص انواع مختلف حملات دارد.
لیست مقالات
لیست مقالات بایگانی شده
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
Web Service Ranking based on QoS and Use Prefer
Seyed Hossein Siadat - Danial Ramezani - Fatemeh Ahani
Customer Churn Prediction Using Data Mining Techniques for an Iranian Payment Application
Olya Rezaeian - Dr ُSeyedhamidreza Shahabi Haghighi - Dr Jamal Shahrabi
شبکههای نرمافزار محور در کلان داده: مطالعهی راهکارهای امنیتی و چالشها
احسان سلیمانی دهکردی - محمدرضا ملاخلیلی میبدی
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
Automatic identification and reconstruction of Tuberculosis in microscopic images using convolutional auto-encoder network
Ahmad Reza Nadafi - Farahnaz Mohanna
توسعه مدل مفهومی طراحی فرآیند مدیریت بحران سیلاب از طریق بهینه سازی استفاده از دستگاه های اینترنت اشیاء (IoT Devices) در تصمیم گیری
محمود رسولی - سید احسان ملیحی
ElectroCNN: Regressive CNN-based Energy Consumption Forecasting Leveraging Weather Data
Dharmi Patel - Mann Patel - Krisha Darji - Rajesh Gupta - Sudeep Tanwar - Jitendra Bhatia - Hossein Shahinzadeh
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1