0% Complete
English
صفحه اصلی
/
یازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
PeCoQ: A Dataset for Persian Complex Question Answering over Knowledge Graph
نویسندگان :
Romina Etezadi
1
Mehrnoush Shamsfard
2
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
کلمات کلیدی :
question answering, complex question, knowledge graph
چکیده :
Question answering systems may find the answers to users' questions from either unstructured texts or structured data such as knowledge graphs. Answering questions using supervised learning approaches including deep learning models need large training datasets. In recent years, some datasets have been presented for the task of Question answering over knowledge graphs, which is the focus of this paper. Although many datasets in English were proposed, there have been a few question answering datasets in Persian. This paper introduces PeCoQ, a dataset for Persian question answering. This dataset contains 10,000 complex questions and answers extracted from the Persian knowledge graph, FarsBase. For each question, the SPARQL query and two paraphrases that were written by linguists are provided as well. There are different types of complexities in the dataset, such as multi-relation, multi-entity, ordinal, and temporal constraints. In this paper, we discuss the dataset's characteristics and describe our methodology for building it.
لیست مقالات
لیست مقالات بایگانی شده
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
شکلدهی سه بعدی پرتو و بهبود نرخ امن در شبکههای مخابراتی بیسیم-تواندادهشده مبتنی بر صفحات بازتابی هوشمند
کوثر انصاری - دکتر مهدی مجیدی
حفظ حریم خصوصی در انتشار نسخه های متوالی دادههای شبکه اجتماعی با امکان افزایش یال
طاهره سرزهی - دکتر مهری رجایی طاهره سرزهی - مهری رجایی -
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
A parallel approach to the fractional time delay model for predicting the spread of COVID-19
Mahdi Movahedian Moghaddam - Kourosh Parand
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
پیشبینی بستری مجدد بیماران با استفاده از استخراج مفاهیم زیستپزشکی از متون بالینی
فهیمه شاهرخ شهرکی - رسول سامانی - دکتر ناصر قدیری فهیمه شاهرخ شهرکی - رسول سامانی - ناصر قدیری -
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
A New Routing Protocol in Internet of Vehicles Inspired of Spread Model of the Covid-19 Virus
Taha Yasin Rezapour - Esmaeil Zeinali - Reza Ebrahimi Atani - Mohammad Mehdi Gilanian Sadeghi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4