0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
نویسندگان :
Zahra Hossein-Nejad
1
Mehdi Nasri
2
1- دانشگاه آزاد اسلامی واحد سیرجان
2- دانشگاه آزاد اسلامی واحد خمینی شهر
کلمات کلیدی :
Diagnosis of Epilepsy،Electroencephalogram signal،Feature selection،Siamese Network
چکیده :
Epilepsy can be defined, according to the World Health Organization, as recurrent seizures related to physical reactions caused by a sudden discharge of electricity to a group of human brain cells. Electroencephalogram (EEG) signals play a very important role in the diagnosis of this disease. The recording of EEG signals recorded by mobile recording devices produces very long information that the detection of the epileptic area requires a long time for the expert to analyze all the information. Traditional methods of analysis are tedious, which is why in recent years there have been so many automated systems for diagnosing epilepsy. In this article, a new approach to the diagnosis of epilepsy is presented. First, the preprocessing process is applied to the EEG signals and the signal is decomposed into ten sub-signals using an experimental wavelet transform. Then, the best features are selected using the proposed method of analysis of variance. Then, using the Siamese network to reduce the dimensions of the feature vector in improving the performance of seizure detection. Finally, the support vector machine (SVM) algorithm uses these features to classify convulsive and non-convulsive EEG signals. The simulation results show that the proposed method of the paper using the EEG signal dataset of the University of Bonn has resulted in 99.30 accuracy and this method can effectively help physicians in diagnosing epilepsy, thus reducing their workload.
لیست مقالات
لیست مقالات بایگانی شده
Targeted Vaccination for COVID-19 Using Mobile Communication Networks
Mohammadmohsen Jadidi - Pegah Moslemi - Saeed Jamshidiha - Iman Masroori - Abbas Mohammadi - Vahid Pourahmadi
Architectural Insights: Comparing Weight Stationary and Output Stationary Systolic Arrays for Efficient Computation
Mahdi Kalbasi
جایگذاری مقادیر ازدست رفته در داده های سری زمانی چندمتغیره برای پیش بینی مرگ ومیر بیماران با رویکرد یادگیری عمیق مبتنی بر مکانیسم توجه
سید علی هاشمی - سعید جلیلی
Improved Weighting in the Automated Texts Classification using Fuzzy Method
Hamidreza Sadrarhami - S. Mohammadali Zanjani - Ghazanfar Shahgholian
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
تشخیص بیماری شبکوری با استفاده از ترکیب الگوریتمهای یادگیری عمیق
میثم فتاحی
To Kill a Mockingbird: Cryptanalysis of an Authenticated Key Exchange Scheme for Drones
Neda Toghraee - Hamid Mala
استخراج ویژگی مجموعه دادههای پزشکی دارای ابعاد بالا با استفاده از برنامه نویسی ژنتیک چند منظوره
سحر فقیهی راد - دکتر سیده نفیسه آل محمد سحر فقیهی راد - سیده نفیسه آل محمد -
Exploring the Relationship Between Gameplay Log Data and Depression & Anxiety
Soroush Elyasi - Arya Varasteh Nezhad - Fattaneh Taghiyareh
Evaluating LLMs in Persian News Summarization
Arya VarastehNezhad - Reza Tavasoli - Mostafa Masumi - Seyed Soroush Majd - Mehrnoush Shamsfard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1