0% Complete
English
صفحه اصلی
/
یازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Effective Classifier for Predicting Churn in Payment Terminals Using RFM model and Deep Neural Network
نویسندگان :
Mahila Dadfarnia
1
Ali Alemi Matinpour
2
Monireh Abdoos
3
1- دانشگاه یزد
2- تربیت مدرس تهران
3- تربیت مدرس تهران
کلمات کلیدی :
Payment terminals, Churn prediction, RFM (recency, frequency and monetary), DNN (Deep Neural Network), Genetic Algorithms
چکیده :
In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods
لیست مقالات
لیست مقالات بایگانی شده
Design of low-latency Floating-Point units for Softmax Computation in Transformer-based Large Language Models
Hoda Ghabeli - Amir Sabbagh Molahosseini
امنیت در اینترنت اشیا؛ معماری، کاربردها، چالشها و راهکارها
مهدی موسی وند - دکتر پیام محمودی نصر مهدی موسی وند - پیام محمودی نصر -
Information Technology Risk Management Model for Remote Control Vehicles
Hamid Reza Naji - Aref Ayati
Enhancing Persian Speech Emotion Recognition with Contrastive Learning and Multimodal Fusion
Mobina Esmaeili - Vajiheh Sabeti
بررسی روشها، مجموعههای داده و معیارهای ارزیابی در حوزهی پرسش از متون درون تصویر
کبری فرشیدی - حسن ختنلو - محرم منصوری زاده - الهام علی قارداش
یک روش خوشه بندی گره ها برای شبکه های حسگر بیسیم با هدف بهبود متوازن سازی بار مبتنی بر تکنیک تاپسیس
راضیه حسین رضایی - فهیمه یزدان پناه
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
Two Novel Designs of Efficient Single-Bit Comparators in QCA Technology with Ultra-Low Energy Dissipation
Shobeir Fayazi - Hatam Abdoli
Emotion Recognition Using Effective Connectivity and Fully Complex-Valued Magnetic Graph Convolution Neural Network
Armin Pishehvar - Eghbal Mansoori - Abbas Mehrbaniyan - Reza Tahmasebi
PC-MCLD: Pose-Constrained and Multi-focal Conditioned Latent Diffusion for Person Image Synthesis
Hanieh Fazli - Reza Azmi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2