0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing Persian Speech Emotion Recognition with Contrastive Learning and Multimodal Fusion
نویسندگان :
Mobina Esmaeili
1
Vajiheh Sabeti
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
کلمات کلیدی :
Multimodal Emotion Recognitiont،Representation Learning،Representation Learning،Speech-Text Fusion،ShEMO Dataset
چکیده :
Emotion recognition from both speech and text in low-resource languages such as Persian presents significant challenges due to linguistic complexity and the scarcity of labeled datasets. Conventional multimodal fusion methods often struggle to capture nuanced cross-modal interactions and typically neglect inter-class emotional relationships. To address these limitations, this paper introduces a novel contrastive learning framework that employs pre-trained projection networks to enhance multimodal representations through a combination of intra-modal, inter-modal, and semi-contrastive objectives. The refined embeddings are integrated via a lightweight fusion layer for final emotion classification. In addition, an automatic speech recognition (ASR) system is incorporated to enrich textual inputs and improve linguistic diversity. Experiments on the ShEMO corpus demonstrate that the proposed approach achieves an accuracy of 83.04% and an unweighted average recall (UAR) of 88.1%, substantially outperforming traditional fusion-based baselines. These results confirm the effectiveness of the framework in improving cross-modal alignment and representation quality, highlighting its potential for intelligent interactive systems, social media sentiment analysis, and automated affective computing applications.
لیست مقالات
لیست مقالات بایگانی شده
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
Knowledge Distillation through a Knowledge Representation Approach (Knowledge Engineering)
Mohammad Hadi Safari Nader
Smart City Standardized Evaluation :Use Case of Mashhad
Dr ُSeyed Mohammadreza Mirsarraf - Dr Alireza Yari - Dr Navid Zohdi - Ali Motevalizadeh
بیشینهسازی تأثیر در شبکههای اجتماعی بر اساس فعالیت کاربران
فاطمه جعفری - علیرضا رضوانیان
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
An integrated approach for estimating software cost estimation using Adaptive Neuro-Fuzzy Inference System and the Grey Wolf Optimization algorithm
Maryam Karimi - Taghi Javdani Gandomani - Mahdi Mosleh
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
An Enhanced Fuzzy Rule-Based Method for Coronary Artery Disease Risk Prediction Using Weighted and Biased Rules
Fatemeh Ahmadi - Mohammad Javad Parseh - Ehsan Amiri
Traffic Aware Routing in P4 Based Software Defined Networks
Ahmad Hamid - Reza Mohammadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2