0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An Enhanced Fuzzy Rule-Based Method for Coronary Artery Disease Risk Prediction Using Weighted and Biased Rules
نویسندگان :
Fatemeh Ahmadi
1
Mohammad Javad Parseh
2
Ehsan Amiri
3
1- دانشگاه جهرم
2- دانشگاه جهرم
3- مجتمع آموزش عالی لارستان
کلمات کلیدی :
Coronary Artery Disease (CAD)،Fuzzy Inference System (FIS)،Mamdani Inference،Membership Functions،Weighted Fuzzy Rules
چکیده :
The integration of artificial intelligence (AI) and fuzzy inference systems (FIS) has shown strong potential for improving clinical decision support in healthcare. Physicians can benefit from AI-driven analyses applied to electronic health records (EHRs), enabling the identification of shared patterns among patient cases. Such pattern extraction facilitates evidence-based recommendations for undiagnosed or ambiguous cases, thereby enhancing decision reliability. This study introduces an adaptive fuzzy rule–based diagnostic framework for coronary artery disease (CAD) prediction, designed to process heterogeneous clinical datasets and provide interpretable decision support. The model incorporates data preprocessing, hybrid feature selection, data-driven membership function generation, and automatic construction of weighted and biased fuzzy rules within a Mamdani inference engine. The framework was evaluated on three standard datasets—Cleveland, Hungarian, and Switzerland—from the UCI Heart Disease Repository using Accuracy, Precision, Recall, and F1-score as evaluation metrics. Experimental results demonstrated accuracies of 89%, 80.9%, and 94.59% respectively, with corresponding F1-scores of 89.34%, 72.13%, and 97.22%. These results confirm that the proposed model outperforms conventional classifiers such as SVM, LR, and KNN in both balanced and imbalanced data conditions. The integration of bias-adjusted and data-driven rule weighting enhances minority-class detection and ensures clinical interpretability, establishing the framework as a reliable and scalable tool for computer-aided diagnosis in healthcare systems.
لیست مقالات
لیست مقالات بایگانی شده
DRL-Based Phase Optimization for O-RIS in Dual-Hop Hard Switching FSO/RIS-aided RF and UWOC Systems
Aboozar Heydaribeni - Hamzeh Beyranvand - Sahar Eslami
طراحی نرم افزاری مبتنی بر واقعیت افزوده با کاربرد فروش عینک
مینا علیانژاد - نسترن زنجانی - زهرا عسکری نژاد امیری
Adaptive Semantic Communication for Non-Terrestrial Networks
Soroosh Miri - Sepehr Abolhasani - S. Mohammad Razavizadeh
LLM-Driven Feature Extraction for Stock Market Prediction: A case study of Tehran Stock Exchange
Siavash Hosseinpour Saffarian - Saman Haratizadeh
Context Awareness Gate for Retrieval Augmented Generation
Mohammad Hassan Heydari - Arshia Hemmat - Erfan Naman - Afsaneh Fatemi
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
ارزیابی و برنامهریزی اجرای پیشنهادی هوش مصنوعی در صنعت پتروشیمی ایران
امین رضا انصاری - احد قائمی - سید مهدی کوچک کوثری
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
An LLM-Based Approach for Clarifying the Decisions of Vision Models in Autonomous Vehicles
Omid Mosalmani - Mohammad Javad Rashti - Seyed Enayat Alavi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2