0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An Enhanced Fuzzy Rule-Based Method for Coronary Artery Disease Risk Prediction Using Weighted and Biased Rules
نویسندگان :
Fatemeh Ahmadi
1
Mohammad Javad Parseh
2
Ehsan Amiri
3
1- دانشگاه جهرم
2- دانشگاه جهرم
3- مجتمع آموزش عالی لارستان
کلمات کلیدی :
Coronary Artery Disease (CAD)،Fuzzy Inference System (FIS)،Mamdani Inference،Membership Functions،Weighted Fuzzy Rules
چکیده :
The integration of artificial intelligence (AI) and fuzzy inference systems (FIS) has shown strong potential for improving clinical decision support in healthcare. Physicians can benefit from AI-driven analyses applied to electronic health records (EHRs), enabling the identification of shared patterns among patient cases. Such pattern extraction facilitates evidence-based recommendations for undiagnosed or ambiguous cases, thereby enhancing decision reliability. This study introduces an adaptive fuzzy rule–based diagnostic framework for coronary artery disease (CAD) prediction, designed to process heterogeneous clinical datasets and provide interpretable decision support. The model incorporates data preprocessing, hybrid feature selection, data-driven membership function generation, and automatic construction of weighted and biased fuzzy rules within a Mamdani inference engine. The framework was evaluated on three standard datasets—Cleveland, Hungarian, and Switzerland—from the UCI Heart Disease Repository using Accuracy, Precision, Recall, and F1-score as evaluation metrics. Experimental results demonstrated accuracies of 89%, 80.9%, and 94.59% respectively, with corresponding F1-scores of 89.34%, 72.13%, and 97.22%. These results confirm that the proposed model outperforms conventional classifiers such as SVM, LR, and KNN in both balanced and imbalanced data conditions. The integration of bias-adjusted and data-driven rule weighting enhances minority-class detection and ensures clinical interpretability, establishing the framework as a reliable and scalable tool for computer-aided diagnosis in healthcare systems.
لیست مقالات
لیست مقالات بایگانی شده
Multi-Modal Longitudinal Tooth Labeling with Temporal Graph–Transformer Integration
Maral Mirza mohammadi - Mahdi Tarom
Predictive Maintenance using LSTM and Adaptive Windowing
Aien Ghanbari Adivi - Behrouz Shahgholi Ghahfarokhi
Aligning the Brick and Mortar cosmetic with digital transformation as the right way to overhaul the In-store Experience
Mehrgan Malekpour - Dr Federica Caboni
A New Method Based on Deep Learning and Time Stabilization of the Propagation Path for Fake News Detection
Fatemeh Torgheh - Dr Mohammad Reza Keyvanpour - Dr Behrooz Masoumi
A Community-Based Method for Identifying Influential Nodes using Network Embedding
Nargess Vafaei - Dr Mohammad Reza Keyvanpour
تحلیل کتابسنجی از مقالات حوزه دوقلوهای دیجیتال
فاطمه مکی زاده - سارا صراف - مصطفی شیرالی
نقشه های شناختی فازی پیشرفته (FCM) رویکردی برای مدل سازی سیستم های پیچیده ی پویا
فریبا اسلامی امیرآبادی - کمال میرزایی بدرآبادی
Revolutionizing Credit Scoring: The Synergy of Mamba State Space and CNN Models
Behnam Sabzalian
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
Towards Provable Privacy Protection in IoT-Health Applications
Samane Sobuti - دکتر سیاوش خرسندی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2