0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Revolutionizing Credit Scoring: The Synergy of Mamba State Space and CNN Models
نویسندگان :
Behnam Sabzalian
1
1- دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
کلمات کلیدی :
Credit Scoring،MAMBA،Convolutional Neural Networks (CNNs)
چکیده :
Credit scoring is a crucial tool for financial institutions to assess the creditworthiness of individuals and businesses. However, traditional credit scoring models often struggle with the complexity and dynamics of credit card data. To address this challenge, this study proposes a novel approach that combines a 1D Convolutional Neural Network (CNN) and Mamba State Space Model to improve the accuracy of credit scoring.The proposed approach leverages the strengths of both models to capture the patterns and dynamics in credit card data. The 1D CNN extracts relevant features from the data, while the Mamba State Space Model captures the underlying structure and dynamics. By combining these two models, the proposed approach aims to achieve more accurate credit scoring predictions.The study uses the "Default of Credit Cards Clients Dataset" collected by UCI Machine Learning Repository to evaluate the performance of the proposed approach. The results show that the proposed method achieves an accuracy of 92%, which is higher than previous researches.
لیست مقالات
لیست مقالات بایگانی شده
A Blockchain-Based Smart Contract Framework for Peer-to-Peer Energy Trading in Smart Grids
Hossein Shahinzadeh - Farshad Ebrahimi - S. Mohammadali Zanjani - Amirafshin Zamani - Saiedeh Mehrabani-Najafabadi - Gevork B. Gharehpetian
A clonal selection mechanism for load balancing in the cloud computing system
Melika Mosayyebi - Reza Azmi
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Improved Weighting in the Automated Texts Classification using Fuzzy Method
Hamidreza Sadrarhami - S. Mohammadali Zanjani - Ghazanfar Shahgholian
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
Mamba-SAM: A Hybrid Architecture for Efficient Cardiac MRI Medical Image Segmentation
Mohammadreza Gholipour Shahraki - Mehdi Rezaeian - Mohammad Ghasemzadeh
آسیب شناسی استقرار بلاکچین در صنعت بانکی کشور ایران
نیلوفر مرادحاصل
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
Handling Data Heterogeneity in Federated Medical Images Classification
Alireza Maleki - Hassan Khotanlou
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2