0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Emotion Recognition Using Effective Connectivity and Fully Complex-Valued Magnetic Graph Convolution Neural Network
نویسندگان :
Armin Pishehvar
1
Eghbal Mansoori
2
Abbas Mehrbaniyan
3
Reza Tahmasebi
4
1- دانشگاه شیراز
2- دانشگاه شیراز
3- دانشگاه شیراز
4- دانشگاه شیراز
کلمات کلیدی :
emotion recognition،Electroencephalogram،graph convolutional neural networks،effective connectivity
چکیده :
Emotion recognition plays a vital role in our lives, from fostering deeper social connections and improving communication to enhancing human-computer interaction and personalizing healthcare. However, accurately deciphering these internal states, especially through physiological signals, presents a significant challenge. Among various methods, emotion recognition using electroencephalography (EEG) has been a persistent area of research, though it faces unique complexities. While much work in EEG-based emotion recognition emphasizes the classification of broad categories like positive versus negative emotions, the exploration of multi-class emotion recognition encompassing a wider spectrum, such as nine distinct emotional states, remains largely underexplored. To address this critical gap, we introduce FCMagnet, a novel fully complex-valued magnetic graph convolutional network, uniquely designed for nine-class EEG-based emotion recognition. Unlike traditional real-valued graph neural networks, FCMagnet captures directed effective brain connectivity through multivariate autoregressive (MVAR) modeling and partial directed coherence (PDC), encoding these as Hermitian Laplacians to preserve both magnitude and phase information. This approach, leveraging complex spectral filtering and complex-domain activation, learns rich representations of emotional brain states. Evaluated on the large FACED dataset, FCMagnet achieved 31.2 ± 3.6% accuracy, substantially outperforming classical real-valued GNNs and matching state-of-the-art spatial models while remaining more compact and interpretable. Our results clearly show that fully complex-valued spectral graph filtering provides a powerful and interpretable framework for advancing fine-grained emotion recognition.
لیست مقالات
لیست مقالات بایگانی شده
Violence detection using one-dimensional convolutional networks
Narges Honarjoo - Ali Abdari - Dr Azadeh Mansouri
Load Balancing in Software-Defined Networks Using Multi-Level Thresholds and Hybrid Switch Migration Strategies
Alireza Karimi - Mohammad yousef Darmani
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
تشخیص ارتباط معنایی در استکاورفلو با رمزگذار جمله جهانی
مجید دلیری - جعفر حبیبی - عیسی انامرادنژاد
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Amir Mohammad Kouyeshpour - Hadi Veisi - Saman Haratizadeh
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
A Novel Service Deployment Policy in Fog Computing Considering The Degree of Availability and Fog Landscape Utilization Using Multiobjective Evolutionary Algorithms
Maryam Eslami - Dr Mehdi Sakhaei-nia
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
تشخیص خودکار اختلال عروقی ماکولا با عنوان عروق گسترش یافته در تصاویر آنژیوگرافی حاصل از تصویربرداری OCTA
راضیه گنجی - دکتر محسن ابراهیمی مقدم - دکتر رامین نوری نیا
A novel approach audio watermarking based on (GBT,DCT,SVD)
Mahdi Mosleh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2