0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Emotion Recognition Using Effective Connectivity and Fully Complex-Valued Magnetic Graph Convolution Neural Network
نویسندگان :
Armin Pishehvar
1
Eghbal Mansoori
2
Abbas Mehrbaniyan
3
Reza Tahmasebi
4
1- دانشگاه شیراز
2- دانشگاه شیراز
3- دانشگاه شیراز
4- دانشگاه شیراز
کلمات کلیدی :
emotion recognition،Electroencephalogram،graph convolutional neural networks،effective connectivity
چکیده :
Emotion recognition plays a vital role in our lives, from fostering deeper social connections and improving communication to enhancing human-computer interaction and personalizing healthcare. However, accurately deciphering these internal states, especially through physiological signals, presents a significant challenge. Among various methods, emotion recognition using electroencephalography (EEG) has been a persistent area of research, though it faces unique complexities. While much work in EEG-based emotion recognition emphasizes the classification of broad categories like positive versus negative emotions, the exploration of multi-class emotion recognition encompassing a wider spectrum, such as nine distinct emotional states, remains largely underexplored. To address this critical gap, we introduce FCMagnet, a novel fully complex-valued magnetic graph convolutional network, uniquely designed for nine-class EEG-based emotion recognition. Unlike traditional real-valued graph neural networks, FCMagnet captures directed effective brain connectivity through multivariate autoregressive (MVAR) modeling and partial directed coherence (PDC), encoding these as Hermitian Laplacians to preserve both magnitude and phase information. This approach, leveraging complex spectral filtering and complex-domain activation, learns rich representations of emotional brain states. Evaluated on the large FACED dataset, FCMagnet achieved 31.2 ± 3.6% accuracy, substantially outperforming classical real-valued GNNs and matching state-of-the-art spatial models while remaining more compact and interpretable. Our results clearly show that fully complex-valued spectral graph filtering provides a powerful and interpretable framework for advancing fine-grained emotion recognition.
لیست مقالات
لیست مقالات بایگانی شده
Improving Drug-Target Interaction Prediction Using Enhanced Feature Selection
Maryam Taheri - Mohammad Reza Keyvanpour - Mohadeseh Saadat Mousavi
Dealing with Black-hole Attacks in Inter-vehicle Networks Using the Packet Delivery Rate Algorithm
Marzieh Sedighi - Mehdi Hamidkhani - Mostafa Sadeghi
پیشبینی میزان بقای بیماران مبتلا به سرطان ریه با استفاده از ترکیب کارآمد روشهای دادهکاوی و بهینهسازی رقابت استعماری
رخشان رمضانی سرچشمه - مهدی هاشمزاده - امین گلزاری اسکوئی
تشخیص خودکار اختلال عروقی ماکولا با عنوان عروق گسترش یافته در تصاویر آنژیوگرافی حاصل از تصویربرداری OCTA
راضیه گنجی - دکتر محسن ابراهیمی مقدم - دکتر رامین نوری نیا
Intelligent Transportation System (ITS) Using Internet of Things (IoT)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Sayyed Mohammad Reza Talakesh
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
AI-Powered Beauty Insights: Sentiment Analysis in a Low-Resource Language
Sajedeh Talebi - Neda Abdolvand - Fatemeh Mahdian
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
Writer-Independent Signature Verification with Enhanced AlexNet and Preprocessing Analysis
Mohammadreza Gholipour Shahraki - Mohammad Ghasemzadeh
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2