0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Emotion Recognition Using Effective Connectivity and Fully Complex-Valued Magnetic Graph Convolution Neural Network
نویسندگان :
Armin Pishehvar
1
Eghbal Mansoori
2
Abbas Mehrbaniyan
3
Reza Tahmasebi
4
1- دانشگاه شیراز
2- دانشگاه شیراز
3- دانشگاه شیراز
4- دانشگاه شیراز
کلمات کلیدی :
emotion recognition،Electroencephalogram،graph convolutional neural networks،effective connectivity
چکیده :
Emotion recognition plays a vital role in our lives, from fostering deeper social connections and improving communication to enhancing human-computer interaction and personalizing healthcare. However, accurately deciphering these internal states, especially through physiological signals, presents a significant challenge. Among various methods, emotion recognition using electroencephalography (EEG) has been a persistent area of research, though it faces unique complexities. While much work in EEG-based emotion recognition emphasizes the classification of broad categories like positive versus negative emotions, the exploration of multi-class emotion recognition encompassing a wider spectrum, such as nine distinct emotional states, remains largely underexplored. To address this critical gap, we introduce FCMagnet, a novel fully complex-valued magnetic graph convolutional network, uniquely designed for nine-class EEG-based emotion recognition. Unlike traditional real-valued graph neural networks, FCMagnet captures directed effective brain connectivity through multivariate autoregressive (MVAR) modeling and partial directed coherence (PDC), encoding these as Hermitian Laplacians to preserve both magnitude and phase information. This approach, leveraging complex spectral filtering and complex-domain activation, learns rich representations of emotional brain states. Evaluated on the large FACED dataset, FCMagnet achieved 31.2 ± 3.6% accuracy, substantially outperforming classical real-valued GNNs and matching state-of-the-art spatial models while remaining more compact and interpretable. Our results clearly show that fully complex-valued spectral graph filtering provides a powerful and interpretable framework for advancing fine-grained emotion recognition.
لیست مقالات
لیست مقالات بایگانی شده
ParaKavosh: A Parallel Algorithm for Finding Biological Network Motifs
Dr Zahra Razaghi Moghadam Kashani - Dr Ali Masoudi-nejad - Dr Abbas Nowzari-dalini
Combinatorial Auction Based on Social Choice in the Internet of Things
Maede Esmaeili - Faria Nassiri-Mofakham - Fatemeh Hassanvand
تحویل بهینه جریان پخش زنده HTTP: یک رویکرد ترکیبی سرور- شبکه
فائزه امینی تهرانی - احمدرضا منتظرالقائم
تحلیل و بررسی تکنیکهای محاسبات تقریبی
محمد میلاد صیاد - محمد رضا بینش مروستی - سید امیر اصغری
SBST challenges from the perspective of the test techniques
Sepideh Kashefi Gargari - Dr Mohammad Reza Keyvanpour
بهبود رهگیری در زنجیره تامین با استفاده از فناوری زنجیره بلوکی
سید عماد موسوی - مهرداد آشتیانی
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
Dr Maryam Imani
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
A Fuzzy Cluster-Based Routing Algorithm to Extend Wireless Sensor Network Lifetime
Mostafa Mirzaie - Armin Mazinani - Dr Sayyed Majid Mazinani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2