0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
نویسندگان :
Maryam Imani
1
1- دانشگاه تربیت مدرس
کلمات کلیدی :
hyperspectral, anomaly detection, entropy, anisotropy
چکیده :
Two statistical disorder parameters are defined for hyperspectral anomaly detection in this paper. While the background information is usually located in principal components of the hyperspectral data containing the most energy, the low variance components contain anomaly or noise signals. Two introduced parameters are computed based on the principal components. The first parameter called as entropy contains the randomness value of the spectral measurements while the second parameter called as anisotropy contains the relative importance of the consecutive components of the hyperspectral image. The extracted features can be given to any arbitrary anomaly detector. The experimental results show that feeding entropy and anisotropy features to the RX detector provides a significant improvement in hyperspectral anomaly detection.
لیست مقالات
لیست مقالات بایگانی شده
A perceptual loss for screen content image super-resolution
Hossein Sekhavaty-Moghadam - Marzieh Hosseinkhani - Dr Azadeh Mansouri
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
بهبود هزینههای تراکنش در معماری مدیریت زنجیرهی تامین مبتنی بر زنجیرهی بلوکی
مژگان نوروزی نژاد - دکتر زهرا موحدی مژگان نوروزی نژاد - زهرا موحدی -
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
An ESB-based Architecture for Authentication as a Service Through Enterprise Application Integration
Masoumeh Hashemi - Mehdi Sakhaei-nia - Morteza Yousef Sanati
جمعآوری، تحلیل و خلاصه سازی نظرات کاربران فارسی زبان در شبکههای اجتماعی پیرامون بیماری فراگیر کووید-19
محمدرضا شمس - محمد یاسین فخار محمدرضا شمس - محمد یاسین فخار -
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
پیشبینی بازار فارکس با استفاده از نمودار شمعی و شبکهی عصبی GRU
محمدرضا نوروزی - مریم مومنی
پیاده سازی سیستم پیش بیمارستانی یافت آمبولانس مناسب در محیط رایانش ابری با استفاده از شبیه ساز کلودسیم
ریحانه حسن رحیمی - فهیمه یزدان پناه
Non-Linear Control of Cancer Model, Considering the Drug Resistance Using Feedback Based Chemotherapy Approach
Danial Kiaei - Hami Tourajizadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4