0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Statistical Disorder Parameters Computing For Hyperspectral Image Anomaly Detection
نویسندگان :
Maryam Imani
1
1- دانشگاه تربیت مدرس
کلمات کلیدی :
hyperspectral, anomaly detection, entropy, anisotropy
چکیده :
Two statistical disorder parameters are defined for hyperspectral anomaly detection in this paper. While the background information is usually located in principal components of the hyperspectral data containing the most energy, the low variance components contain anomaly or noise signals. Two introduced parameters are computed based on the principal components. The first parameter called as entropy contains the randomness value of the spectral measurements while the second parameter called as anisotropy contains the relative importance of the consecutive components of the hyperspectral image. The extracted features can be given to any arbitrary anomaly detector. The experimental results show that feeding entropy and anisotropy features to the RX detector provides a significant improvement in hyperspectral anomaly detection.
لیست مقالات
لیست مقالات بایگانی شده
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
بررسی کارآمدی فناوری وب 0.2 در پشتیبانی از فرآیندهای انسان محور و دانش مبنا
سید احسان ملیحی - فاطمه مشایخی کردکلا
Aspect-Based Sentiment Analysis of After-Sales Service Quality: A Case Study of Snowa and Competitors Using Digikala Reviews
Safiyeh Samadanian - Marjan Kaedi
تشخیص خودکار اختلال عروقی ماکولا با عنوان عروق گسترش یافته در تصاویر آنژیوگرافی حاصل از تصویربرداری OCTA
راضیه گنجی - دکتر محسن ابراهیمی مقدم - دکتر رامین نوری نیا
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
Open-domain question classification and completion in conversational information search
Omid Mohammadi Kia - Mahmood Neshati - Mahsa Soudi Alamdari
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
Advanced SMS Spam Detection using Deep Complex Models and Sine-Cosine Algorithm
Sepehr Rezaei - Mohammadreza Shams - Mohsen Alambardar Meybodi
A Survey on Utilizing Reinforcement Learning in Wireless Sensor Networks Routing Protocols
Ali Forghani Elah Abadi - Seyedeh Elham Asghari - Sepideh Sharifani - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2