0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Knowledge Extraction from Technical Reports Based on Large Language Models: An Exploratory Study
نویسندگان :
Parsa Bakhtiari
1
Hassan Bashiri
2
Alireza Khalilipour
3
Masoud Nasiripour
4
Moharram Challenger
5
1- دانشگاه صنعتی همدان
2- دانشگاه صنعتی همدان
3- University of Antwerp
4- دانشگاه صنعتی همدان
5- University of Antwerp
کلمات کلیدی :
Knowledge Extraction،Large Language Model،Fine Tuning
چکیده :
Organizations and companies possess a vast amount of documents generated over the years. These documents contain valuable information and knowledge that can be instrumental in resolving ambiguities and challenges experts face. Information retrieval and knowledge management systems are tools for extracting documents relevant to users’ informational needs, addressing part of the knowledge extraction challenge from these document collections. With the emergence of generative artificial intelligence and large language models that exhibit strong capa- bilities in understanding textual documents, knowledge extraction solutions have shifted towards utilizing these models. Large language models possess general knowledge obtained from pre- training methods, and there are various approaches to infuse domain-specific knowledge into the general understanding of the language model. This research first examines the possible techniques for fine-tuning a large language model in a specific domain. We then train the model using fine-tuning methods on a collection of documents and technical reports from the industry. Finally, we measure the improvement in the large language model’s capability to extract domain-specific knowledge.
لیست مقالات
لیست مقالات بایگانی شده
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
Farzaneh Khajehgili-Mirabadi - Mohammad Reza Keyvanpour
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
Benchmarking Embedding Models for Persian-Language Semantic Information Retrieval
Mahmood Kalantari - Mehdi Feghhi - Nasser Mozayani
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
An efficient hybrid approach for performance-based alternative design evaluation in systems engineering
Abbas Chaman Para - Maryam Nooraei Abadeh - Sondos Bahadori
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
بررسی امنیت وفقی در اینترنت وسایل نقلیه
سیده یگانه غیور باغبانی - دکتر سعید جلیلی سیده یگانه غیور باغبانی - سعید جلیلی -
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1