0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Knowledge Extraction from Technical Reports Based on Large Language Models: An Exploratory Study
نویسندگان :
Parsa Bakhtiari
1
Hassan Bashiri
2
Alireza Khalilipour
3
Masoud Nasiripour
4
Moharram Challenger
5
1- دانشگاه صنعتی همدان
2- دانشگاه صنعتی همدان
3- University of Antwerp
4- دانشگاه صنعتی همدان
5- University of Antwerp
کلمات کلیدی :
Knowledge Extraction،Large Language Model،Fine Tuning
چکیده :
Organizations and companies possess a vast amount of documents generated over the years. These documents contain valuable information and knowledge that can be instrumental in resolving ambiguities and challenges experts face. Information retrieval and knowledge management systems are tools for extracting documents relevant to users’ informational needs, addressing part of the knowledge extraction challenge from these document collections. With the emergence of generative artificial intelligence and large language models that exhibit strong capa- bilities in understanding textual documents, knowledge extraction solutions have shifted towards utilizing these models. Large language models possess general knowledge obtained from pre- training methods, and there are various approaches to infuse domain-specific knowledge into the general understanding of the language model. This research first examines the possible techniques for fine-tuning a large language model in a specific domain. We then train the model using fine-tuning methods on a collection of documents and technical reports from the industry. Finally, we measure the improvement in the large language model’s capability to extract domain-specific knowledge.
لیست مقالات
لیست مقالات بایگانی شده
Targeted Vaccination for COVID-19 Using Mobile Communication Networks
Mohammadmohsen Jadidi - Pegah Moslemi - Saeed Jamshidiha - Iman Masroori - Abbas Mohammadi - Vahid Pourahmadi
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
پیشبینی حجم ترافیک شهری با استفاده از دادههای سرویس نشان مورد مطالعاتی: خیابان کمال اصفهان
مهسا لطیفی - جمشید مالکی
بررسی روش یادگیری انتقالی جهت پیشبینی پیوند
علی روحانی فر - کمال میرزایی بدرآبادی
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
NFV-Based Distributed Service Function Chaining with Imperfect Information
Mahsa Alikhani - Marzieh Sheikhi - Dr Vesal Hakami
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
تولید خودکار موارد آزمون برای پوشش مسیر اصلی با الگوریتم جایا
ُSaba Yadegari - Mohammad-Reza Keyvanpour
Embedded speech encoder for low-resource languages
Alireza A.Tabatabaei - Pouria Sameti - Ali Bohlooli
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1