0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
نویسندگان :
Faeze Sadati
1
Behrooz Rezaie
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
machine learning، Convolutional Neural Network، feature extraction، Support Vector Machine، flower classification
چکیده :
Nowadays, deep learning techniques are increasingly growing in machine vision for object recognition, segmentation, classification, and so on, in a wide variety of applications. In this study, we apply the convolutional neural network (CNN) to flower classification. For this purpose, we firstly increase the data with the augmentation techniques and use them in the pre-trained CNN models in which classification part is removed and instead of it, we use global average pooling (GAP) in the last layer for extracting their features. The features obtained from these models are concatenated, and then we use a support vector machine (SVM) as classifier for the flower classification. We use the Oxford 102 flower and the Oxford 17 flower datasets in our experiments. By applying this method, we achieve 96.47% classification accuracy for the Oxford 102 flower and 97.64% classification accuracy for the Oxford 17 flower. The results show the effectiveness of the proposed strategy and perform more accurate classification than the traditional methods.
لیست مقالات
لیست مقالات بایگانی شده
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
قطعه بندی خودکار توده کلیه در تصاویر توموگرافی کامپیوتری با استفاده از همافزایی شبکه عصبی عمیق U-Net و الگوریتم فراابتکاری نهنگ
علی خلیلی - محمد مصلح - محمد خیراندیش
A Survey on Utilizing Reinforcement Learning in Wireless Sensor Networks Routing Protocols
Ali Forghani Elah Abadi - Seyedeh Elham Asghari - Sepideh Sharifani - Seyyed Amir Asghari - Mohammadreza Binesh Marvasti
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
دستهبندی متون خبری فارسی با یادگیری فعال
مینا طباطبائی - دکتر سعیده ممتازی
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
پیدا کردن خبره در انجمنهای پرسش و پاسخ با استفاده از الگوریتم طبقهبندی ترکیبی
مهراد قاضی پور - علیرضا رضوانیان
ارائۀ چارچوب هستانشناسی برای شهر هوشمند مبتنی بر سیستمهای سایبر-فیزیکی
علی اصغر قائمی - جعفر حبیبی - سید حسن میریان
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
تشخیص مراحل خواب با کمک جنگل تصادفی و ویژگی های فرکانسی استخراج شده از سیگنال های EEG و EOG
سیدعلی حسینی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1