0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Embedded speech encoder for low-resource languages
نویسندگان :
Alireza A.Tabatabaei
1
Pouria Sameti
2
Ali Bohlooli
3
1- University of Isfahan
2- University of Isfahan
3- University of Isfahan
کلمات کلیدی :
Embedded Systems،Embedded AI،Embedded Speech embedding
چکیده :
Although high-performance artificial intelligence (AI) models require substantial computational resources, embedded systems are constrained by limited hardware capabilities, such as memory and processing power. On the other hand, embedded systems have a broad range of applications, making the integration of AI and embedded systems a prominent topic in both hardware and AI research. Creating powerful speech embeddings for embedded systems is challenging, as such models, like Wave2Vec, are typically computationally intensive. Additionally, the scarcity of data for many low-resource languages further complicates the development of high-performance models. To address these challenges, we utilized BERT to generate speech embeddings. BERT was selected because, in addition to producing meaningful embeddings, it is trained on numerous low-resource languages and facilitates the design of efficient decoders. This study introduces a compact speech encoder tailored for low-resource languages, capable of functioning as an encoder across a diverse range of speech tasks. To achieve this, we utilized BERT to generate meaningful embeddings. However, due to the high dimensionality of BERT embeddings, which imposes significant computational demands on many embedded systems, we applied dimensionality reduction techniques. The reduced-dimensional vectors were subsequently used as labels for speech data to train a model composed of convolutional neural networks (CNNs) and fully connected layers. Finally, we demonstrated the encoder's effectiveness through an application in speech command recognition.
لیست مقالات
لیست مقالات بایگانی شده
Automatic Analysis of Inconsistencies in Inter-Enterprise Business Processes: Introducing a Formal Adaptation Patterns Catalog
Somayeh Ashourian - Shohreh َAjoudanian
ارائه راهکاری جهت مقابله با حملات DoS در شبکه های نرم افزارمحور
ویدا هاشمی - احمد بختیاری شهری - رضا جاویدان
A Topic Based Method to Classify the Question Clarity in CQA Networks
Alireza Khabbazan - Dr Ahmad Ali Abin
توسعه مدل مفهومی طراحی فرآیند مدیریت بحران سیلاب از طریق بهینه سازی استفاده از دستگاه های اینترنت اشیاء (IoT Devices) در تصمیم گیری
محمود رسولی - سید احسان ملیحی
پیشبینی بستری مجدد بیماران با استفاده از استخراج مفاهیم زیستپزشکی از متون بالینی
فهیمه شاهرخ شهرکی - رسول سامانی - دکتر ناصر قدیری فهیمه شاهرخ شهرکی - رسول سامانی - ناصر قدیری -
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
Improving hypergraph attention and hypergraph convolution networks
Mustafa Mohammadi Gharasuie - Mahmood Shabankhah - Ali Kamandi
Context Awareness Gate for Retrieval Augmented Generation
Mohammad Hassan Heydari - Arshia Hemmat - Erfan Naman - Afsaneh Fatemi
Classification and Evaluation of Privacy Preserving Data Mining Methods
Negar Nasiri - Mohammadreza Keyvanpour
An Efficient Link Prediction Method using Community Structures
Dr Hadi Shakibian - Setareh Mokhtari
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1