0% Complete
English
صفحه اصلی
/
سیزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
نویسندگان :
Amir Salimiparsa
1
Hadi Veisi
2
Mohammad-shahram Moin
3
1- دانشگاه تهران
2- دانشگاه تهران ٫ دانشکده علوم و فنون نوین
3- پژوهشگاه ارتباطات وفناوری اطلاعات
کلمات کلیدی :
Head pose estimation،MobileNet،Pruning،Quantization،Deep neural networks
چکیده :
Head pose estimation is a critical problem with a wide range of applications. There are many methods that almost solved head pose estimation problems but they are computationally expensive and not suitable for edge devices and embedded systems. In this paper, a deep learning network based on a modified MobileNetV3 architecture is proposed to reduce the computational cost with results comparable to heavy methods. The proposed method is pruned to achieve even less computational cost and results in a network that is more ideal for edge devices and smartphones. The architecture used is MobileNetV3Small which has more inverted residual blocks, making it able to inherit MobileNetV3Large performance but with less width, followed by dense layers. Pruning is enhanced by estimating layer importance and resource reallocation, in order for the informative layers to be less affected by pruning and also to improve performance. In the experiments, the proposed model performs better than many existing heavies with 3.46 MAE before the pruning and 3.61 MAE after the pruning, even though the model has six times fewer parameters than the others and its inference time is about 7ms.
لیست مقالات
لیست مقالات بایگانی شده
An approach to model the optimal service provisioning in vehicular cloud networks
Farhoud Jafari Kaleibar - Maghsoud Abbaspour
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Ehsan Akefi - Hassan Khotanlou
Hardware Imperfection Effects in Wireless Virtual Reality System with Hybrid Beamforming
Nasim Alikhani - Abbas Mohammadi
Intra Class Feature Learning and Supervised Triplet Sampling for Deep Metric Learning
Hamideh Rafiee - Ahmad Ali Abin - Seyed Soroush Majd - Viet-Vu Vu
طراحی پلتفرم یکپارچه مدیریت مزرعه هوشمند مبتنی بر اینترنت اشیاء و یادگیری عمیق
محمد خدادادی نژاد - صبا جودکی
دستهبندی متون خبری فارسی با یادگیری فعال
مینا طباطبائی - دکتر سعیده ممتازی
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2