0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
نویسندگان :
Seyed Amir Mousavi
1
Mostafa Sadeghi
2
Mohammad Sadeq Sirjani
3
1- دانشگاه فردوسی مشهد
2- دانشگاه آزاد اسلامی واحد نجف آباد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Network Security،Intrusion Detection System،Artificial Intelligence،Machine Learning
چکیده :
With the increasing Internet use, network security has become essential due to the rise in cyber-attacks on network services. To detect these attacks, a robust Intrusion Detection System (IDS) is required. Traditional IDS face challenges like high false alert rates and slow real-time attack detection. Machine learning (ML) can improve this situation, providing a low False Alarm Rate and high detection rates. This research used five ML methods (Logistic Regression, Random Forest, k-Nearest Neighbors, Support Vector Machine, and XGBoost) to classify the UNSW-NB15 dataset. The goal is to evaluate the performance of various machine learning classifiers in detecting attacks for Internet of Things (IoT) network intrusion detection. The study highlighted the importance of further research to reduce false positives and negatives. To evaluate these classifiers, precision, accuracy, recall, and F1 score were used. The results show that XGBoost achieved the highest accuracy and recall. However, only some algorithms performed perfectly in all aspects, suggesting the need for diverse detection strategies. Future research should focus on developing comprehensive systems and ensemble approaches to minimize false alerts and missed detections.
لیست مقالات
لیست مقالات بایگانی شده
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
مهدی علیرضانژاد - عمار عبیس حسین المعموری
تاثیر مدیریت دانش مشتری بر توسعه محصول جدید و نوآورانه با رویکرد مدل سازی معادلات ساختاری با استفاده از حداقل مربعات جزئی: مطالعۀ موردی شرکت کاله
دکتر آرش خسروی - سیده فاطمه حسینی - دکتر مرتضی رجب زاده آرش خسروی - سیده فاطمه حسینی - مرتضی رجب زاده -
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
Niloufar Faridani - Amirali Soltani Tehrani - Ramin Toosi
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
یک روش خوشه بندی گره ها برای شبکه های حسگر بیسیم با هدف بهبود متوازن سازی بار مبتنی بر تکنیک تاپسیس
راضیه حسین رضایی - فهیمه یزدان پناه
سیستم تشخیص نفوذ مبتنی برشبکه عصبی کانولوشن برای تشخیص حمله انکارسرویس در اینترنت وسایل نقلیه
زهرا جانفدا - سید امین حسینی سنو
Persian deaf sign language recognition system using deep learning
Mohammad Ebrahimi
Optimal control of robotic hand for rehabilitation using fractional order systems and EEG signal processing
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Masoud Shafiee
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Mohamad Khorsandi - Alireza Dastmalchi Saei - Mohammadreza Sharbaf
توسعه مدل مفهومی طراحی فرآیند مدیریت بحران سیلاب از طریق بهینه سازی استفاده از دستگاه های اینترنت اشیاء (IoT Devices) در تصمیم گیری
محمود رسولی - سید احسان ملیحی
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1