0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
نویسندگان :
Seyed Amir Mousavi
1
Mostafa Sadeghi
2
Mohammad Sadeq Sirjani
3
1- دانشگاه فردوسی مشهد
2- دانشگاه آزاد اسلامی واحد نجف آباد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Network Security،Intrusion Detection System،Artificial Intelligence،Machine Learning
چکیده :
With the increasing Internet use, network security has become essential due to the rise in cyber-attacks on network services. To detect these attacks, a robust Intrusion Detection System (IDS) is required. Traditional IDS face challenges like high false alert rates and slow real-time attack detection. Machine learning (ML) can improve this situation, providing a low False Alarm Rate and high detection rates. This research used five ML methods (Logistic Regression, Random Forest, k-Nearest Neighbors, Support Vector Machine, and XGBoost) to classify the UNSW-NB15 dataset. The goal is to evaluate the performance of various machine learning classifiers in detecting attacks for Internet of Things (IoT) network intrusion detection. The study highlighted the importance of further research to reduce false positives and negatives. To evaluate these classifiers, precision, accuracy, recall, and F1 score were used. The results show that XGBoost achieved the highest accuracy and recall. However, only some algorithms performed perfectly in all aspects, suggesting the need for diverse detection strategies. Future research should focus on developing comprehensive systems and ensemble approaches to minimize false alerts and missed detections.
لیست مقالات
لیست مقالات بایگانی شده
Extending Interaction Flow Modeling Language as a Profile for Form-making Systems
Ghazaleh Shahin - Dr Bahman Zamani
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
انتخاب ویژگی با استفاده از الگوریتم بهینه سازی ذرات مبتنی بر استراتژی خود تطبیقی دودویی جهت تشخیص بیماری
الهام صالحی - دکتر محمدرضا کرمی ملایی - دکتر حسام عمرانپور الهام صالحی - محمدرضا کرمی ملایی - حسام عمرانپور -
Binary water stream algorithm: a new meta-heuristic optimization technique
Faezeh Rahimi Sebdani - Mehdi Nasri
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
Sparse Beamforming Design for Non-Coherent UD-CRAN with mm-Wave Fronthaul Links
Alireza M. Hosseini - Dr Abbas Mohammadi
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
Experimental analysis of automated negotiation agents in modeling Gaussian bidders
Fatemeh Hassanvand - Dr Faria Nassiri-Mofakham
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3