0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing Supervised Learning in Speech Emotion Recognition through Unsupervised Representations
نویسندگان :
Niloufar Faridani
1
Amirali Soltani Tehrani
2
Ramin Toosi
3
1- دانشکده برق و کامپیوتر دانشگاه تهران
2- دانشکده برق و کامپیوتر دانشگاه تهران
3- دانشکده برق و کامپیوتر دانشگاه تهران
کلمات کلیدی :
Speech Emotion Recognition،Self-supervised Learning،Convolutional Neural Network
چکیده :
Speech Emotion Recognition (SER) is pivotal in enhancing human-computer interaction by enabling a deeper understanding of emotional states across various applications, contributing to more empathetic and effective communication. This study proposes an innovative approach integrating self-supervised feature extraction with supervised classification for emotion recognition from small audio segments. In the preprocessing step, to eliminate the need to craft audio features, we employed a self-supervised feature extractor based on the Wav2Vec model to capture acoustic features from audio data. Then, the output feature maps of the preprocessing step are fed to a custom-designed Convolutional Neural Network (CNN)–-based model to perform emotion classification. Utilizing the ShEMO dataset as our testing ground, the proposed method surpasses two baseline methods, i.e., support vector machine classifier and transfer learning of a pre-trained CNN. Comparing the proposed method to the state-of-the-art techniques in the SER task indicates the superiority of the proposed method. Our findings underscore the pivotal role of deep unsupervised feature learning in elevating the landscape of SER, offering enhanced emotional comprehension in the realm of human-computer interactions.
لیست مقالات
لیست مقالات بایگانی شده
Violence detection using one-dimensional convolutional networks
Narges Honarjoo - Ali Abdari - Dr Azadeh Mansouri
Design and Simulation of a New Multiplexer with Energy Analysis in Quantum Cellular Automata Technology
- - -
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
Evaluating LLMs in Persian News Summarization
Arya VarastehNezhad - Reza Tavasoli - Mostafa Masumi - Seyed Soroush Majd - Mehrnoush Shamsfard
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
خوشه بندی شبکههای بیسیم ادهاک مبتنی بر محدودیتهای فازی
پروا کلیبری - کریم صمدزمینی
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
A Graph Attention-Based Autoencoder for Critical Path Anomaly Detection in Microservices
Mahdi Naderi - Hossein Momeni - Shayan Shahini
ارائه راهکاری جهت مقابله با حملات DoS در شبکه های نرم افزارمحور
ویدا هاشمی - احمد بختیاری شهری - رضا جاویدان
GanjNet: Leveraging Network Modeling with Large Language Models for Persian Word Sense Induction
Amir Mohammad Kouyeshpour - Hadi Veisi - Saman Haratizadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1