0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Electrophysiological Modeling and Interactive Approaches of Electrical Circuits and Hypergraphs for Understanding Neural Circuit Dynamics
نویسندگان :
Arian Baymani
1
Maryam Naderi Soorki
2
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
کلمات کلیدی :
neural networks،hypergraph theory،electrical circuits،network parameters
چکیده :
To improve and optimize the performance of the nervous system, one can no longer rely solely on traditional one-dimensional analytical approaches from disciplines such as biochemistry or physiology; instead, it is essential to incorporate all aspects of the sciences, including advanced mathematics, electrical engineering, computer engineering, and more. One of the best tools for understanding, increasing accuracy, and enhancing the nervous system's performance is using hypergraph concepts combined with degree n and higher circuits. This approach allows a better understanding of the neural network as a broad and complex functional network. While traditional neural network models have significantly contributed to artificial intelligence, they often need to represent the intricacies inherent to biological neural systems. This limitation has prompted more complex models to capture the dynamic interactions and interconnections between neurons effectively. A hypergraph representation allows for a nuanced and in-depth understanding of neural dynamics by modeling the multifaceted relationships among neurons. By integrating principles from electrical circuit theory into our hypergraph framework, we derive a set of optimization strategies to enhance the functional efficiency and performance of neural networks. This integration enriches the theoretical foundations of our approach and provides practical insights into the operational mechanisms of neural processing. Unlike classical models, the properties of n-degree circuits illustrate the multifaceted functions of neurons and their interconnections, enabling a depiction of how information flows and is processed in the human brain. This paper demonstrates the potential of hypergraph structures to represent neural networks' parallel and sequential processing capabilities. Using higher-order differential equations and their conceptual interpretations, it elucidates the critical role that complex connections play in cognitive functions such as memory, learning, and decision-making. Through simulations and rigorous theoretical analyses, we show that our hypergraph-based method significantly improves the optimization of neural network parameters. The results indicate substantial enhancements in task performance—including pattern recognition, sensory processing, and more complex cognitive functions. We will also explore how incorporating higher-order structures increases the accuracy of neural computations and provides a robust framework for modeling real-world cognitive scenarios that reflect human-like intelligence. This research contributes to the theoretical landscape of neural network optimization and paves the way for future studies to develop more biologically relevant neural models. Ultimately, when integrating engineering, clinical, and medical sciences, all these insights may lead to applications that enhance human-computer interaction and decision-making capabilities.
لیست مقالات
لیست مقالات بایگانی شده
شکلدهی سه بعدی پرتو و بهبود نرخ امن در شبکههای مخابراتی بیسیم-تواندادهشده مبتنی بر صفحات بازتابی هوشمند
کوثر انصاری - دکتر مهدی مجیدی
Sustainability analysis and improvement of model driven engineering and model transformation languages
Kevin Lano - Shekoufeh Kolahdouz Rahimi
Evaluating LLMs in Persian News Summarization
Arya VarastehNezhad - Reza Tavasoli - Mostafa Masumi - Seyed Soroush Majd - Mehrnoush Shamsfard
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
توسعه مدل مفهومی طراحی فرآیند مدیریت بحران سیلاب از طریق بهینه سازی استفاده از دستگاه های اینترنت اشیاء (IoT Devices) در تصمیم گیری
محمود رسولی - سید احسان ملیحی
بررسی تأثیر استقرار استاندارد COBIT در افزایش بهره وری سازمانها (مطالعه موردی: شعب نمایندگیهای همراه اول، ایرانسل، رایتل)
دکتر محمد ابراهیم سمیع - ساره رحمانیان محمد ابراهیم سمیع - ساره رحمانیان -
A clonal selection mechanism for load balancing in the cloud computing system
Melika Mosayyebi - Reza Azmi
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
حفظ حریم خصوصی در انتشار نسخه های متوالی دادههای شبکه اجتماعی با امکان افزایش یال
طاهره سرزهی - دکتر مهری رجایی طاهره سرزهی - مهری رجایی -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.1