0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A U-Net architecture with graph attention networks to accurately define tooth boundaries
نویسندگان :
Ehsan Akefi
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا همدان
2- دانشگاه بوعلی سینا همدان
کلمات کلیدی :
Image Segmentation،U-Net،Graph Neural Network،Graph Attention Network،Dental Panoramic Radiography
چکیده :
It is very important for clinical diagnosis and treatment planning to be able to accurately segment teeth in panoramic radiographs. However, this is still a big problem because teeth often overlap, and standard convolutional neural networks (CNNs) have trouble capturing long-range spatial dependencies. This paper presents a novel hybrid deep learning architecture that combines a U-Net with an Advanced Spatial Graph Processor to address these constraints. The proposed model substitutes the conventional bottleneck of the U-Net with a Graph Neural Network (GNN) module, which distinctly represents non-local relationships among various regions of the image by converting the feature map into a graph structure. The model can dynamically focus on important structural patterns by using Graph Attention Networks (GAT). This makes it much easier to see the boundaries of complex and overlapping teeth. To address the issue of insufficient labeled medical data, a comprehensive data augmentation pipeline was implemented. This increased the training dataset by five times, making the model more generalizable. Our hybrid approach is better than the other one, as shown by experimental results on the Tufts Dental Database. The proposed model with attention (Unet + graph + attention) outperformed the baseline U-Net, achieving a Dice Score of 92.91% and an Intersection over Union (IOU) of 86.77%. These results show that using the local feature extraction capabilities of U-Net with the global structural modeling of GNNs is a strong and very accurate way to segment teeth. This has a lot of potential for use in clinical settings.
لیست مقالات
لیست مقالات بایگانی شده
DynamicEvoStream : خوشه بندی پویای جریان داده تکاملی در زمانهای بیکاری
زهرا عمیقی - مرتضی یوسف صنعتی - میرحسین دزفولیان
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
A Fuzzy Cluster-Based Routing Algorithm to Extend Wireless Sensor Network Lifetime
Mostafa Mirzaie - Armin Mazinani - Dr Sayyed Majid Mazinani
پیاده سازی سیستم پیش بیمارستانی یافت آمبولانس مناسب در محیط رایانش ابری با استفاده از شبیه ساز کلودسیم
ریحانه حسن رحیمی - فهیمه یزدان پناه
OENMOP: Loss-Aware 4×4 and 5×5 and Scalable Non‑blocking Optical Switches Designed for Odd-Even Routing Algorithm for Chip-Scale Interconnection Networks
Negin Bagheri Renani - Elham Yaghoubi - Mina Mohammadirad
FedCloak: Backdoor-Based Covert Channels in Federated Learning
Mohammad Matin Rezaeifard - Fatemeh Zahedi - Seyed Arsalan Vasegh Rahim Parvar - Reza Ebrahimi Atani
Mode Selection and Resource Allocation in D2D-Enabled MC-NOMA using Matching Theory
Alireza Gholamrezaee - Hamid Farrokhi - Javad Zeraatkar Moghaddam
An approach to model the optimal service provisioning in vehicular cloud networks
Farhoud Jafari Kaleibar - Maghsoud Abbaspour
بهبود تشخیص نفوذ به شبکه اینترنت اشیاء با استفاده از مدل ترکیبی الگوریتم های بهینهسازی ازدحام ذرات، گرگ خاکستری و جنگل تصادفی
مهدی علیرضانژاد - عمار عبیس حسین المعموری
Heart Sound Classification based on Group-based Sparse Features of PCG Signal
Zahra Hossein-Nejad - Mehdi Nasri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2