0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A U-Net architecture with graph attention networks to accurately define tooth boundaries
نویسندگان :
Ehsan Akefi
1
Hassan Khotanlou
2
1- دانشگاه بوعلی سینا همدان
2- دانشگاه بوعلی سینا همدان
کلمات کلیدی :
Image Segmentation،U-Net،Graph Neural Network،Graph Attention Network،Dental Panoramic Radiography
چکیده :
It is very important for clinical diagnosis and treatment planning to be able to accurately segment teeth in panoramic radiographs. However, this is still a big problem because teeth often overlap, and standard convolutional neural networks (CNNs) have trouble capturing long-range spatial dependencies. This paper presents a novel hybrid deep learning architecture that combines a U-Net with an Advanced Spatial Graph Processor to address these constraints. The proposed model substitutes the conventional bottleneck of the U-Net with a Graph Neural Network (GNN) module, which distinctly represents non-local relationships among various regions of the image by converting the feature map into a graph structure. The model can dynamically focus on important structural patterns by using Graph Attention Networks (GAT). This makes it much easier to see the boundaries of complex and overlapping teeth. To address the issue of insufficient labeled medical data, a comprehensive data augmentation pipeline was implemented. This increased the training dataset by five times, making the model more generalizable. Our hybrid approach is better than the other one, as shown by experimental results on the Tufts Dental Database. The proposed model with attention (Unet + graph + attention) outperformed the baseline U-Net, achieving a Dice Score of 92.91% and an Intersection over Union (IOU) of 86.77%. These results show that using the local feature extraction capabilities of U-Net with the global structural modeling of GNNs is a strong and very accurate way to segment teeth. This has a lot of potential for use in clinical settings.
لیست مقالات
لیست مقالات بایگانی شده
A qualitative spoofing detection system based on LSTMs for IoMT
Iman Jafarian - Amirmasoud Sepehrian - Siavash Khorsandi
طراحی نرم افزاری مبتنی بر واقعیت افزوده با کاربرد فروش عینک
مینا علیانژاد - نسترن زنجانی - زهرا عسکری نژاد امیری
استخراج موارد آزمون سطح برونمتد و درونکلاس از برنامههای شئگرا
محمد قرشی - حسن حقیقی
Improving Personalized Federated Learning-based QoE Assessment using Clustering
Skokufe Motaharipour - Behrouz Shahgholi Ghahfarokhi - Saeid Afshari
استخراج ویژگی مجموعه دادههای پزشکی دارای ابعاد بالا با استفاده از برنامه نویسی ژنتیک چند منظوره
سحر فقیهی راد - دکتر سیده نفیسه آل محمد سحر فقیهی راد - سیده نفیسه آل محمد -
A Multi-Task Framework Using Mamba for Identity, Age, and Gender Classification from Hand Images
Amirabbas Rezasoltani - Alireza Hosseini - Ramin Toosi - MohammadAli Akhaee
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
Amirreza Mokhtari Rad - Pouya Ardehkhani - Hormehr Alborzi
طبقه بندی روش های شناسایی داده های تکراری در جهت تسهیل فرایند پاکسازی داده ها
مهدی جعفری - احمد عبدالله زاده بار فروش
نظرکاوی در سطح مفهوم با استفاده از رویکردی ترکیبی
سیدرضا قادریان خیرآبادی سیدرضا قادریان خیرآبادی -
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2