0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Training Stability in Variational Autoencoders Through the Integration of Score Matching Loss
نویسندگان :
Amirreza Mokhtari Rad
1
Pouya Ardehkhani
2
Hormehr Alborzi
3
1- پردیس فارابی دانشگاه تهران
2- پردیس فارابی دانشگاه تهران
3- پردیس فارابی دانشگاه تهران
کلمات کلیدی :
Variational Auto Encoder،Training،Stability،Generative Models،Score Matching
چکیده :
In this research, a Variational Autoencoder (VAE) model was developed, and the CIFAR100 dataset was employed as the primary data source. The problem addressed pertained to the instability in the training process of VAE models. To mitigate this issue, various loss expressions were explored, including the use of score matching loss independently, in conjunction with total variation loss, and in combination with reconstruction loss. The innovative approach revealed that when score matching loss was integrated either with total variation loss or when applied as a standalone loss function, the training process exhibited increased stability. This was evident through smoother loss curves and latent space visualizations that displayed characteristics akin to a normal distribution. As a consequence, this novel approach promises the potential for building more stable generative models, which can significantly enhance the overall training process in VAEs. This innovation provides a valuable contribution to the field of generative modeling, with the prospect of addressing the longstanding challenge of training stability in VAEs, thereby opening avenues for more efficient and effective model development and application.
لیست مقالات
لیست مقالات بایگانی شده
جمعآوری، تحلیل و خلاصه سازی نظرات کاربران فارسی زبان در شبکههای اجتماعی پیرامون بیماری فراگیر کووید-19
محمدرضا شمس - محمد یاسین فخار محمدرضا شمس - محمد یاسین فخار -
SPA Bot: Smart Price-Action Trading Bot for Cryptocurency Market
Dr Hamid Jazayeriy - Mohammad Daryani
Distributed coordination protocol for event data exchange in IoT monitoring applications
Behnam Khazael - Hadi Tabatabaee Malazi
ارائه تکنیک یادگیری چندهسته ای مبتنی بر روش بهینه سازی برای مسئله دسته بندی سیگنال های EEG مبتنی بر تصور حرکتی
یوکابد امیری - حسام عمرانپور
A Biased Random Key Genetic Algorithm for the Dial-a-Ride Problem
ُSomayeh Sohrabi - Koorush Ziarati - Morteza Keshtkaran
A Demand Response Schema in Industry: Smart Scheduling Approach for Industrial Processes
Negin Shafinezhad - Hamid Abrishami - Maryam Mahmoodi
Classification of mental states of human concentration based on EEG signal
Mehran Safari Dehnavi - Vahid Safari Dehnavi - Dr Masoud Shafiee
Enhancing Software Effort Estimation with an Integrated Approach of Particle Swarm Optimization and Genetic Algorithms in Analogy-based Method
Ehsan Nasr - Keyvan Mohebbi
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
Open-domain question classification and completion in conversational information search
Omid Mohammadi Kia - Mahmood Neshati - Mahsa Soudi Alamdari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2