0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Enhancing QSAR Modeling: A Fusion of Sequential Feature Selection and Support Vector Machine
نویسندگان :
Farzaneh Khajehgili-Mirabadi
1
Mohammad Reza Keyvanpour
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
کلمات کلیدی :
Descriptors selection،Drug discovery،QSAR modeling،Sequential Feature Selection،Support vector machine
چکیده :
Quantitative Structure-Activity Relationship (QSAR) modeling is an approach employed to predict the biological response of chemical compounds by considering their structural attributes. Classification machine learning algorithms can learn patterns and relationships between chemical structure (descriptors) and biological activity from datasets and then use this knowledge to predict active or inactive compounds. This study introduces a new approach that combines Sequential Feature Selection (SFS) with the Support Vector Machine (SVM) algorithm to select the most relevant molecular descriptors for QSAR modeling. SFS and SVM work collaboratively to identify the best subset of descriptors, resulting in improved predictive accuracy. The key steps include selecting an appropriate subset of descriptors using SFS from a larger set, SVM models are built using different subsets of descriptors, and the most accurate model is selected for final use. As shown by measuring Accuracy, Precision, Recall, and F1-score of the proposed SVM algorithm in two datasets, DKPES and PubChem, The results demonstrate the effectiveness and robustness of this approach in achieving subsets of descriptors with strong predictive capabilities.
لیست مقالات
لیست مقالات بایگانی شده
Wireless Virtual-Reality by considering Hybrid Beamforming in IEEE802.11ay standard
Nasim Alikhani - Abbas Mohammadi
پیش بینی بیماری قلبی با استفاده از روش تحلیل شبکه ای
هدیه مشتاقی محمدزاده - فاطمه باقری
A New Method Based on Deep Learning and Time Stabilization of the Propagation Path for Fake News Detection
Fatemeh Torgheh - Dr Mohammad Reza Keyvanpour - Dr Behrooz Masoumi
Video Steganography in HEVC Using Intra-Prediction Modes
Vahidreza Seirafian - Masoud Omomi
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
Mode Selection and Resource Allocation in D2D-Enabled MC-NOMA using Matching Theory
Alireza Gholamrezaee - Hamid Farrokhi - Javad Zeraatkar Moghaddam
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
Detection and Identification of Cyber-Attacks in Cyber-Physical Systems Based on Machine Learning Methods
Zohre Nasiri Zarandi
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4