0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Inner and Outer Bearing Fault Diagnosis of electrical Motors Using a Proposed Algorithm and Vibration Signals
نویسندگان :
Vahid Safari Dehnavi
1
Masoud Shafiee
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Bearing faults،vibration signals،classification
چکیده :
This paper presents an approach for detecting bearing faults by using vibration signals. The proposed approach encompasses a classification algorithm incorporating preprocessing, window selection, feature selection and extraction, classification methods, and validation. This algorithm regards the Statistical features and harmonics of fault-related frequencies obtained from vibration signals as indicators of faults. The application of this approach is demonstrated in three cases: inner-race, outer-race, and inner and outer-race bearing fault detection. Inner and outer bearing faults have been investigated in three different cases of 0.3, 1, and 3 millimeters, and the proposed algorithm has detected each of these cases separately. The impact of window length on classification accuracy is investigated in this study, considering various feature sets. Additionally, a new feature set is introduced to enhance accuracy. Furthermore, a comparative assessment of different classification algorithms is conducted. The experimental findings indicate that the proposed method is capable of effectively identifying bearing faults and their status, thereby enhancing the accuracy of fault diagnosis.
لیست مقالات
لیست مقالات بایگانی شده
Paths-oriented Test Data Generation using Genetic Algorithm
Mohammad Reza Hassanpour Charmchi - Dr Bagher Rahimpour cami
A Neural-based Approach to Aid Early Parkinson's Disease Diagnosis
Dr Armin Salimi-badr - Mohammad Hashemi
Presenting an Edge-based Air Quality Management System for Smart City Scenarios
Tina Samizadeh Nikoui - Ali Balador - Amir Masoud Rahmani - Hooman Tabarsaied
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT
Hajar Ghanbari
Classification of Personality Traits on Facebook Using Key Phrase Extraction, Language Models and Machine Learning
Faezeh Safari - Abdolah Chalechale
پیاده سازی سیستم پیش بیمارستانی یافت آمبولانس مناسب در محیط رایانش ابری با استفاده از شبیه ساز کلودسیم
ریحانه حسن رحیمی - فهیمه یزدان پناه
Vehicle to Vehicle Distance Estimation Utilizing Visible Light Communication and Machine Learning
Armita Khari - Houman Zarrabi
A High-Speed Quantum Reversible Controlled Adder/Subtractor Circuit
Negin Mashayekhi - Mohammad Reza Reshadinezhad - Shekoofeh Moghimi
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2