0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
نویسندگان :
Seyedeh Niusha Motevallian
1
Seyed Mohammad Hossein Hasheminejad
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
کلمات کلیدی :
Recommender Systems, Cold Start, Graph Neural Network, GraphSAGE, Clustering
چکیده :
With the growing volume of information being expanded by product and service providers, recommender systems have become a tool to prevent information overload. One of the most popular types of recommender systems is collaborative filtering. The issue of user cold start is the main challenge in this approach. Cold start means the lack of information to predict ratings of a user accurately. Because the user's prior experiences in the system are essential in trusting the recommendations, making the proper recommendations is very important in the early stages of interaction. In this paper, the aim is to solve the problem of partial user cold start by gathering the information of the trust network and users ratings. In this approach, the trust network information and user ratings are first aggregated by the GraphSAGE neural network algorithm to extract the user's hidden features vector. Then, user ratings are predicted in each cluster of users. This method, which has been evaluated on two data sets, in the best case, improves the accuracy of predicting non-existing ratings for partially cold start users in terms of mean absolute error by 0.9% and root mean squared error by 1.1% compared to previous methods. Also, due to the inductivity of the GraphSAGE algorithm, if a new user (a user who was not available in the data set during the training process) enters, there is no need to retrain the model, and its embedding vector is created with the existing model.
لیست مقالات
لیست مقالات بایگانی شده
A Comparative Evaluation of Machine Learning Models for Anomaly-Based IDS in IoT Networks
Seyed Amir Mousavi - Mostafa Sadeghi - Mohammad Sadeq Sirjani
Towards Provable Privacy Protection in IoT-Health Applications
Samane Sobuti - دکتر سیاوش خرسندی
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
Data Analysis to Reduce Electrical Power Plants
Amirali Sahraei - Jamshid Shanbehzadeh
تخلیهبار محاسباتی ریزدانه تحرکآگاه در رایانش لبه برای اینترنت اشیاء
شکوفه نوروزی - دکتر زینب موحدی شکوفه نوروزی - زینب موحدی -
تحویل بهینه جریان پخش زنده HTTP: یک رویکرد ترکیبی سرور- شبکه
فائزه امینی تهرانی - احمدرضا منتظرالقائم
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
قطعه بندی خودکار توده کلیه در تصاویر توموگرافی کامپیوتری با استفاده از همافزایی شبکه عصبی عمیق U-Net و الگوریتم فراابتکاری نهنگ
علی خلیلی - محمد مصلح - محمد خیراندیش
A New Method Based on Deep Learning and Time Stabilization of the Propagation Path for Fake News Detection
Fatemeh Torgheh - Dr Mohammad Reza Keyvanpour - Dr Behrooz Masoumi
A Swarm Intelligence Approach to Design Optimal Repeaters in Multilayer Graphene Nanoribbon Interconnects
Majid Sanaeepur - Maryam Momeni
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1