0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
نویسندگان :
Seyedeh Niusha Motevallian
1
Seyed Mohammad Hossein Hasheminejad
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
کلمات کلیدی :
Recommender Systems, Cold Start, Graph Neural Network, GraphSAGE, Clustering
چکیده :
With the growing volume of information being expanded by product and service providers, recommender systems have become a tool to prevent information overload. One of the most popular types of recommender systems is collaborative filtering. The issue of user cold start is the main challenge in this approach. Cold start means the lack of information to predict ratings of a user accurately. Because the user's prior experiences in the system are essential in trusting the recommendations, making the proper recommendations is very important in the early stages of interaction. In this paper, the aim is to solve the problem of partial user cold start by gathering the information of the trust network and users ratings. In this approach, the trust network information and user ratings are first aggregated by the GraphSAGE neural network algorithm to extract the user's hidden features vector. Then, user ratings are predicted in each cluster of users. This method, which has been evaluated on two data sets, in the best case, improves the accuracy of predicting non-existing ratings for partially cold start users in terms of mean absolute error by 0.9% and root mean squared error by 1.1% compared to previous methods. Also, due to the inductivity of the GraphSAGE algorithm, if a new user (a user who was not available in the data set during the training process) enters, there is no need to retrain the model, and its embedding vector is created with the existing model.
لیست مقالات
لیست مقالات بایگانی شده
Enhancing Software Effort Estimation with an Integrated Approach of Particle Swarm Optimization and Genetic Algorithms in Analogy-based Method
Ehsan Nasr - Keyvan Mohebbi
طبقه بندی روش های شناسایی داده های تکراری در جهت تسهیل فرایند پاکسازی داده ها
مهدی جعفری - احمد عبدالله زاده بار فروش
Distributed coordination protocol for event data exchange in IoT monitoring applications
Behnam Khazael - Hadi Tabatabaee Malazi
شناسایی جایگاه مالونیلاسیون در پروتئینها با بهرهگیری از استخراج ویژگی و تکنیکهای پردازش زبان طبیعی
حنانه رجبیون - محمد قاسم زاده - وحید رنجبر بافقی
شناسایی حملات فیشینگ با استفاده از الگوریتم عقاب آتشین و شبکه عصبی کانولوشن
علی کوشاری - مهدی فرتاش
بهبود کارایی بارسپاری در شبکه های سلولی با استفاده از ارتباطات مشارکتی در لایه MAC
نبیل الراشدی - رسول صادقی - وائل حسین اللامی - مهدی حمیدخانی
An Eco-Friendly Cosmopolitan (EFC) by Recycling Scientific/Industrial Towns (RSITs)
Engineer Reza Khalilian - Dr. Abdalhossein Rezai - Dr. Mohammadreza Talakesh
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
IT-based and Non-IT-based methods to separate and collect waste
Hoda Harati - Farzad Haghighi-Rad - Reza Yousefi Zenouz
Leveraging Retrieval-Augmented Generation for Persian University Knowledge Retrieval
Arshia Hemmat - Mohammad Hassan Heydari - Kianoosh Vadaei - Afsaneh Fatemi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.2.4