0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
نویسندگان :
Seyedeh Niusha Motevallian
1
Seyed Mohammad Hossein Hasheminejad
2
1- دانشگاه الزهرا(س)
2- دانشگاه الزهرا(س)
کلمات کلیدی :
Recommender Systems, Cold Start, Graph Neural Network, GraphSAGE, Clustering
چکیده :
With the growing volume of information being expanded by product and service providers, recommender systems have become a tool to prevent information overload. One of the most popular types of recommender systems is collaborative filtering. The issue of user cold start is the main challenge in this approach. Cold start means the lack of information to predict ratings of a user accurately. Because the user's prior experiences in the system are essential in trusting the recommendations, making the proper recommendations is very important in the early stages of interaction. In this paper, the aim is to solve the problem of partial user cold start by gathering the information of the trust network and users ratings. In this approach, the trust network information and user ratings are first aggregated by the GraphSAGE neural network algorithm to extract the user's hidden features vector. Then, user ratings are predicted in each cluster of users. This method, which has been evaluated on two data sets, in the best case, improves the accuracy of predicting non-existing ratings for partially cold start users in terms of mean absolute error by 0.9% and root mean squared error by 1.1% compared to previous methods. Also, due to the inductivity of the GraphSAGE algorithm, if a new user (a user who was not available in the data set during the training process) enters, there is no need to retrain the model, and its embedding vector is created with the existing model.
لیست مقالات
لیست مقالات بایگانی شده
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
طه رستمی - دکتر سعید جلیلی طه رستمی - سعید جلیلی -
تولید خودکار موارد آزمون برای پوشش مسیر اصلی با الگوریتم جایا
ُSaba Yadegari - Mohammad-Reza Keyvanpour
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
Farnaz Salmanian - Dr Hamid Jazayeri - Dr Javad Kazemitabar
BMPA- DSL: Binary Marine Predators Algorithm to Identify Driver's Different Levels of Stress
Mahtab Vaezi - Mehdi Nasri - Farhad Azimifar - Mahdi Mosleh
Electrophysiological Modeling and Interactive Approaches of Electrical Circuits and Hypergraphs for Understanding Neural Circuit Dynamics
Arian Baymani - Maryam Naderi Soorki
AI-Driven Approach to Detect Equivalent Elements within Domain Models
Mohammad-Sajad Kasaei - Mohammadreza Sharbaf - Afsaneh Fatemi - Bahman Zamani
تشخیص بیماری مزمن کلیوی با استفاده از یادگیرندههای گروهی و انتخاب ویژگیهای مؤثر مبتنی بر الگوریتم بهینهسازی تبادل حرارتی
صبا عارفنیا - مهدی هاشمزاده - امین گلزاری اسکوئی
Paths-oriented Test Data Generation using Genetic Algorithm
Mohammad Reza Hassanpour Charmchi - Dr Bagher Rahimpour cami
SDN-based Deep Anomaly Detection For Securing Cloud Gaming Servers
Mohammadreza Ghafari - Dr Seyed Mostafa Safavi Hemami
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1