0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Demand Response Schema in Industry: Smart Scheduling Approach for Industrial Processes
نویسندگان :
Negin Shafinezhad
1
Hamid Abrishami
2
Maryam Mahmoodi
3
1- Ferdowsi University of Mashhad
2- Ferdowsi University of Mashhad
3- Ferdowsi University of Mashhad
کلمات کلیدی :
Smart grid،demand response،manufacturing processes،energy-aware scheduling،peak demand،energy cost
چکیده :
The manufacturing sector is recognized as the largest energy consumer within the smart grid. Excessive energy usage in production lines poses significant challenges, such as increased peak demand, high energy costs, strained grid resources, and power outages. Implementing demand response programs can address these issues and provide reliable and stable power to customers. Additionally, the integration of renewable energy sources can notably reduce carbon emissions and support sustainability objectives. To enhance efficiency, scheduling and intelligent manufacturing techniques can shift the execution time of production processes to off-peak periods and adjust consumption patterns on the production line. In this study, we propose a method called Scheduling for Industrial Processes to modify Energy consumption behavior (SIPE) under specified deadlines. SIPE offers economic benefits through an energy storage system for industrial customers participating in demand response programs. Moreover, it modulates energy consumption based on a maximum negotiated energy cost, which is determined as the highest allowable energy consumption cost within a defined scheduling period between the power provider and industrial customers. The proposed approach coordinates processes based on their durations and defined constraints. To evaluate the effectiveness of this approach, we selected Additive Manufacturing, as it is one of the most energy-intensive industries and is used across various manufacturing fields. We conducted numerous experiments by varying production parameters in the manufacturing line and compared the results with state-of-the-art approaches. The performance evaluation results demonstrate a significant reduction in both energy costs and power demand specially during peak periods.
لیست مقالات
لیست مقالات بایگانی شده
KGLM-QA: A Novel Approach for Knowledge Graph-Enhanced Large Language Models for Question Answering
Alireza Akhavan safaei - Pegah Saboori - Reza Ramezani - Mohammadali Nematbakhsh
سنجش داده محور ارزش ویژه برند کارکنان
علیرضا برادران - سپیده نصیری
A Comparison between Slimed Network and Pruned Network for Head Pose Estimation
Amir Salimiparsa - Hadi Veisi - Mohammad-shahram Moin
بهبود رهگیری در زنجیره تامین با استفاده از فناوری زنجیره بلوکی
سید عماد موسوی - مهرداد آشتیانی
روشی برای تشخیص مرحله پیشرفت آلزایمر در تصاویرFMRI مبتنی بر شبکه های عصبی چگال
فرساد زمانی بروجنی - عباس بهره دار
COVID-19 Image Retrieval Using Siamese Deep Neural Network and Hashing Technique
Farsad Zamani Boroujeni - Doryaneh Hossein Afshari - Fatemeh Mahmoodi
User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
Farnaz Salmanian - Dr Hamid Jazayeri - Dr Javad Kazemitabar
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Integration of Electric Vehicles in Smart Grid using Deep Reinforcement Learning
Farkhondeh Kiaee
Multi-label Classification of Steel Surface Defects Using Transfer Learning and Vision Transformer
Amirhossein Komijani - Farzaneh Vafaeinezhad - Javad Khoramdel - Yasamin Borhani - Esmaeil Najafi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1