0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Demand Response Schema in Industry: Smart Scheduling Approach for Industrial Processes
نویسندگان :
Negin Shafinezhad
1
Hamid Abrishami
2
Maryam Mahmoodi
3
1- Ferdowsi University of Mashhad
2- Ferdowsi University of Mashhad
3- Ferdowsi University of Mashhad
کلمات کلیدی :
Smart grid،demand response،manufacturing processes،energy-aware scheduling،peak demand،energy cost
چکیده :
The manufacturing sector is recognized as the largest energy consumer within the smart grid. Excessive energy usage in production lines poses significant challenges, such as increased peak demand, high energy costs, strained grid resources, and power outages. Implementing demand response programs can address these issues and provide reliable and stable power to customers. Additionally, the integration of renewable energy sources can notably reduce carbon emissions and support sustainability objectives. To enhance efficiency, scheduling and intelligent manufacturing techniques can shift the execution time of production processes to off-peak periods and adjust consumption patterns on the production line. In this study, we propose a method called Scheduling for Industrial Processes to modify Energy consumption behavior (SIPE) under specified deadlines. SIPE offers economic benefits through an energy storage system for industrial customers participating in demand response programs. Moreover, it modulates energy consumption based on a maximum negotiated energy cost, which is determined as the highest allowable energy consumption cost within a defined scheduling period between the power provider and industrial customers. The proposed approach coordinates processes based on their durations and defined constraints. To evaluate the effectiveness of this approach, we selected Additive Manufacturing, as it is one of the most energy-intensive industries and is used across various manufacturing fields. We conducted numerous experiments by varying production parameters in the manufacturing line and compared the results with state-of-the-art approaches. The performance evaluation results demonstrate a significant reduction in both energy costs and power demand specially during peak periods.
لیست مقالات
لیست مقالات بایگانی شده
AI-based Secure Intrusion Detection Framework for Digital Twin-enabled Critical Infrastructure
Tanisha Patel - Nilesh Kumar Jadav - Tejal Rathod - Sudeep Tanwar - Deepak Garg - Hossein Shahinzadeh
Knowledge Graph Based Retrieval-Augmented Generation for Multi-Hop Question Answering Enhancement
Mahdi Amiri Shavaki - Pouria Omrani - Ramin Toosi - Mohammad Ali Akhaee
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
Aspect-Based Sentiment Analysis of After-Sales Service Quality: A Case Study of Snowa and Competitors Using Digikala Reviews
Safiyeh Samadanian - Marjan Kaedi
A Novel Approach to Data mining algorithms and IoT based data mining machine learning
Danial Ramezani - Seyed Hossein Siadat
خوشه بندی مقید داده ها به کمک اتوماتای یادگیر سلولی
شکوفه علی محمدی - احمدعلی آبین
پیش بینی ارتباط میزان مرگ و میر با هم زمانی وجود دو بیماری در مبتلایان به کرونا به کمک بگارگیری شبکه عصبی Word2Vec
سمن مثقالی - دکتر جواد عسکری سمن مثقالی - جواد عسکری -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2