0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
CRYPTOCURRENCY PRICE PREDICTION USING A HYBRID DEEP MODEL AND TECHNICAL AND PSYCHOLOGICAL INDICATORS
نویسندگان :
Mohammadreza Borjian
1
Mohammad Mehdi Homayounpour
2
1- موسسه آموزش عالی شهاب دانش قم
2- موسسه آموزش عالی شهاب دانش قم
کلمات کلیدی :
Cryptocurrency،Deep Learning،Time Series Forecasting،Transformer
چکیده :
This study develops a hybrid model for daily price prediction based on key and influential features of the financial market. The proposed model integrates Transformer architecture, Convolutional Neural Networks (CNN), and Gated Recurrent Unit (GRU) networks to provide improved performance compared to previous research in forecasting the next day's prices. The model combines the CNN's capability in extracting essential features from time series data and GRU's ability to retain temporal dependencies. The Transformer structure enables the model to identify complex spatio-temporal features more effectively, while the GRU maintains long-term dependencies among data. In this study, the Fear and Greed Index—a measure of market sentiment—is incorporated as a key input into the proposed hybrid model. By combining this psychological indicator with traditional market data such as price and trading volume, the model gains the ability to capture not only historical price trends but also the emotional and behavioral dynamics influencing market movements.A nine-day time-series dataset including previous prices, the Fear and Greed Index, the Relative Strength Index (RSI), and trading volume was employed for training and evaluation. The results demonstrate that the proposed model achieves higher accuracy in price prediction compared to previous models and can detect more complex and nonlinear patterns in financial data. This model can serve as an efficient tool for financial analysts and investors to make more informed and effective investment decisions in financial markets.
لیست مقالات
لیست مقالات بایگانی شده
A U-Net architecture with graph attention networks to accurately define tooth boundaries
Ehsan Akefi - Hassan Khotanlou
Aligning the Brick and Mortar cosmetic with digital transformation as the right way to overhaul the In-store Experience
Mehrgan Malekpour - Dr Federica Caboni
Context Awareness Gate for Retrieval Augmented Generation
Mohammad Hassan Heydari - Arshia Hemmat - Erfan Naman - Afsaneh Fatemi
مدل یادگیری ماشین برای تشخیص تقلب در کارتهای اعتباری با رویکرد بهینهسازی AUC و تنظیم خودکار ابرپارامترها
محمد مهدی متولی
A New Sentence Ordering Method Using BERT Pretrained Model
Melika Golestanipour - Seyedeh Zahra Razavi - Dr Heshaam Faili
DRL-Based Phase Optimization for O-RIS in Dual-Hop Hard Switching FSO/RIS-aided RF and UWOC Systems
Aboozar Heydaribeni - Hamzeh Beyranvand - Sahar Eslami
بررسی نقش هوش مصنوعی در بهینهسازی عملکرد و ارتقای مهارتهای منابع انسانی راهآهن: مطالعه موردی راهآهن لرستان
مهدی محمدزاده - علی بهلولی - میثم پرنیان
Simulanteus Load Balancing of Servers and Controllers in SDN-based IoMT
Somaye Imanpour - Ahmadreza Montazerolghaem - Saeed Afahari
Presenting an Edge-based Air Quality Management System for Smart City Scenarios
Tina Samizadeh Nikoui - Ali Balador - Amir Masoud Rahmani - Hooman Tabarsaied
روش مهاجرت خوشهای برای بهبود بستربندی به مشتری در گردشکارهای بدون سرویسدهنده
محمدامین قسوری جهرمی - مهرداد آشتیانی - فاطمه بخشی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2