0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Novel Decentralized Privacy Preserving Federated Learning Model for Healthcare Applications
نویسندگان :
Saba Ameri
1
Reza Ebrahimi Atani
2
1- دانشگاه گیلان
2- دانشگاه گیلان
کلمات کلیدی :
Decentralized Learning،Edge AI،Federated Learning،Distributed Deep Learning،Privacy Preserving AI
چکیده :
With the increasing use of deep learning algorithms in various fields of science, particularly in healthcare and disease diagnosis, challenges related to data availability are often encountered. In the healthcare industry, due to the sensitivity around patient privacy, data collection is limited. To train a high-quality deep learning model capable of aiding in disease diagnosis, a large amount of data is required, which is difficult to obtain under these conditions. One solution for utilizing healthcare data to train an effective deep learning model is to implement distributed deep learning models, where data remains local but still participates in the training process of proposing a deep learning model. While some implementations of distributed deep learning, such as federated learning, exist, they suffer vulnerabilities in preserving data privacy. The goal of this research is to develop a distributed deep learning model that safeguards user’s privacy from both internal and external attacks while maintaining the quality of the deep learning model.
لیست مقالات
لیست مقالات بایگانی شده
Blockchain-based Secure UAV-assisted Battlefield Operation underlying 5G
Dhruvi Pancholi - Nilesh Kumar Jadav - Sudeep Tanwar - Deepak Garg - S. Mohammadali Zanjani
Automatic Analysis of Inconsistencies in Inter-Enterprise Business Processes: Introducing a Formal Adaptation Patterns Catalog
Somayeh Ashourian - Shohreh َAjoudanian
Cryptanalysis of two password authenticated key exchange schemes
Mohammad Ali Poorafsahi - Hamid Mala
Enhancing Mutation Testing through Grammar Fuzzing and Parse Tree-Driven Mutation Generation
Mohamad Khorsandi - Alireza Dastmalchi Saei - Mohammadreza Sharbaf
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
Predicting Suicide Risk in Adolescents with Random Forest for Unbalanced Data Management
Fatemeh Rabbani - Dr Behrooz Masoumi - Dr Mohammad Reza Keyvanpour
Investigating the impact of management information systems (MIS) on organizational transparency with an emphasis on work ethics
Sadegh Balouch - Omid mehdi Ebadati
Statistical distance-base acceptance strategy for desirable offers in bilateral automated negotiation
Arash Ebrahimnezhad - Dr Hamid Jazayeriy - Dr Faria Nassiri-mofakham
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
Zahra Hossein-Nejad - Mehdi Nasri
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1